Stover T, Diensthuber M. Molecular biology of hearing. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2011;10:Doc06.
PubMed
Google Scholar
Ekdale EG. Form and function of the mammalian inner ear. J Anat. 2016;228(2):324–37.
Article
PubMed
Google Scholar
Roccio M, Senn P, Heller S. Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res. 2020;397: 107859.
Article
PubMed
Google Scholar
Wu DK, Kelley MW. Molecular mechanisms of inner ear development. Cold Spring Harb Perspect Biol. 2012;4(8): a008409.
Article
PubMed
PubMed Central
CAS
Google Scholar
Locher H, Frijns JH, van Iperen L, de Groot JC, Huisman MA, Chuva de Sousa Lopes SM. Neurosensory development and cell fate determination in the human cochlea. Neural Dev. 2013;8:20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ota CY, Kimura RS. Ultrastructural study of the human spiral ganglion. Acta Otolaryngol. 1980;89(1–2):53–62.
Article
CAS
PubMed
Google Scholar
Hosoya M, Fujioka M, Murayama AY, Okano H, Ogawa K. The common marmoset as suitable nonhuman alternative for the analysis of primate cochlear development. FEBS J. 2021;288(1):325–53.
Article
CAS
PubMed
Google Scholar
Hosoya M, Fujioka M, Murayama AY, Ozawa H, Okano H, Ogawa K. Neuronal development in the cochlea of a nonhuman primate model, the common marmoset. Dev Neurobiol. 2021;81(8):905–38.
Article
CAS
PubMed
Google Scholar
Hosoya M, Fujioka M, Murayama AY, Ogawa K, Okano H, Ozawa H. Dynamic Spatiotemporal Expression Changes in Connexins of the Developing Primate’s Cochlea. Genes. 2021;12(7):1082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hosoya M, Fujioka M, Murayama AY, Ogawa K, Okano H, Ozawa H. Dynamic Spatiotemporal Expression Changes in Connexins of the Developing Primate’s Cochlea. Genes. 2021;12(7):1082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuzaki S, Hosoya M, Okano H, Fujioka M, Ogawa K. Expression pattern of EYA4 in the common marmoset (Callithrix jacchus) cochlea. Neurosci Lett. 2018;662:185–8.
Article
CAS
PubMed
Google Scholar
Hosoya M, Fujioka M, Okano H, Ogawa K. Distinct Expression Pattern of a Deafness Gene, KIAA1199, in a Primate Cochlea. Biomed Res Int. 2016;2016:1–8.
Article
CAS
Google Scholar
Suzuki N, Hosoya M, Oishi N, Okano H, Fujioka M, Ogawa K. Expression pattern of wolframin, the WFS1 (Wolfram syndrome-1 gene) product, in common marmoset (Callithrix jacchus) cochlea. NeuroReport. 2016;27(11):833–6.
Article
CAS
PubMed
Google Scholar
Hosoya M, Fujioka M, Ogawa K, Okano H. Distinct Expression Patterns Of Causative Genes Responsible For Hereditary Progressive Hearing Loss In Non-Human Primate Cochlea. Sci Rep. 2016;6:22250.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Z, Cheng Z, Gong N, Xu Z, Jin C, Wu H, et al. Neural presbycusis at ultra-high frequency in aged common marmosets and rhesus monkeys. Aging (Albany NY). 2021;13(9):12587–606.
Article
Google Scholar
Okano H. Current Status of and Perspectives on the Application of Marmosets in Neurobiology. Annu Rev Neurosci. 2021;44(1):27–48.
Article
CAS
PubMed
Google Scholar
Hearn JP, Lunn SF, Burden FJ, Pilcher MM. Management of marmosets for biomedical research. Lab Anim. 1975;9(2):125–34.
Article
CAS
PubMed
Google Scholar
Xiang M, Gan L, Li D, Chen ZY, Zhou L, O’Malley BW Jr, et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci U S A. 1997;94(17):9445–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mulvaney J, Dabdoub A. Atoh1, an essential transcription factor in neurogenesis and intestinal and inner ear development: function, regulation, and context dependency. J Assoc Res Otolaryngol. 2012;13(3):281–93.
Article
PubMed
PubMed Central
Google Scholar
Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, et al. Math1: an essential gene for the generation of inner ear hair cells. Science. 1999;284(5421):1837–41.
Article
CAS
PubMed
Google Scholar
Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, et al. Sox2 is required for sensory organ development in the mammalian inner ear. Nature. 2005;434(7036):1031–5.
Article
CAS
PubMed
Google Scholar
Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KS, Pevny LH, et al. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci U S A. 2008;105(47):18396–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development. 1999;126(8):1581–90.
Article
CAS
PubMed
Google Scholar
Morrison A, Hodgetts C, Gossler A, Hrabe de Angelis M, Lewis J. Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech Dev. 1999;84(1–2):169–72.
Article
CAS
PubMed
Google Scholar
Kiernan AE, Xu J, Gridley T. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet. 2006;2(1): e4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Murata J, Tokunaga A, Okano H, Kubo T. Mapping of notch activation during cochlear development in mice: implications for determination of prosensory domain and cell fate diversification. J Comp Neurol. 2006;497(3):502–18.
Article
CAS
PubMed
Google Scholar
Murata J, Ohtsuka T, Tokunaga A, Nishiike S, Inohara H, Okano H, et al. Notch-Hes1 pathway contributes to the cochlear prosensory formation potentially through the transcriptional down-regulation of p27Kip1. J Neurosci Res. 2009;87(16):3521–34.
Article
CAS
PubMed
Google Scholar
Bok J, Chang W, Wu DK. Patterning and morphogenesis of the vertebrate inner ear. Int J Dev Biol. 2007;51(6–7):521–33.
Article
CAS
PubMed
Google Scholar
Chatterjee S, Kraus P, Lufkin T. A symphony of inner ear developmental control genes. BMC Genet. 2010;11(1):68.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brigande JV, Kiernan AE, Gao X, Iten LE, Fekete DM. Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role? Proc Natl Acad Sci U S A. 2000;97(22):11700–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morsli H, Tuorto F, Choo D, Postiglione MP, Simeone A, Wu DK. Otx1 and Otx2 activities are required for the normal development of the mouse inner ear. Development. 1999;126(11):2335–43.
Article
CAS
PubMed
Google Scholar
Burton Q, Cole LK, Mulheisen M, Chang W, Wu DK. The role of Pax2 in mouse inner ear development. Dev Biol. 2004;272(1):161–75.
Article
CAS
PubMed
Google Scholar
van der Wees J, van Looij MA, de Ruiter MM, Elias H, van der Burg H, Liem SS, et al. Hearing loss following Gata3 haploinsufficiency is caused by cochlear disorder. Neurobiol Dis. 2004;16(1):169–78.
Article
PubMed
CAS
Google Scholar
Luo XJ, Deng M, Xie X, Huang L, Wang H, Jiang L, et al. GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea. Hum Mol Genet. 2013;22(18):3609–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang M, Sage C, Li H, Xiang M, Heller S, Chen ZY. Diverse expression patterns of LIM-homeodomain transcription factors (LIM-HDs) in mammalian inner ear development. Dev Dyn. 2008;237(11):3305–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radde-Gallwitz K, Pan L, Gan L, Lin X, Segil N, Chen P. Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J Comp Neurol. 2004;477(4):412–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
He D, Guo R, Zheng D, Xu M, Li P, Guo L, et al. Transcription factor Isl1 is dispensable for the development of the mouse prosensory region. Cytotechnology. 2020;72(3):407–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim WY, Fritzsch B, Serls A, Bakel LA, Huang EJ, Reichardt LF, et al. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development. 2001;128(3):417–26.
Article
CAS
PubMed
Google Scholar
Liu M, Pereira FA, Price SD, Chu MJ, Shope C, Himes D, et al. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev. 2000;14(22):2839–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawoko-Kerali G, Rivolta MN, Lawlor P, Cacciabue-Rivolta DI, Langton-Hewer C, van Doorninck JH, et al. GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear. Mech Dev. 2004;121(3):287–99.
Article
CAS
PubMed
Google Scholar
Huang EJ, Liu W, Fritzsch B, Bianchi LM, Reichardt LF, Xiang MQ. Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development. 2001;128(13):2421–32.
Article
CAS
PubMed
Google Scholar
Deng M, Yang H, Xie X, Liang G, Gan L. Comparative expression analysis of POU4F1, POU4F2 and ISL1 in developing mouse cochleovestibular ganglion neurons. Gene Expr Patterns. 2014;15(1):31–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawoko-Kerali G, Rivolta MN, Holley M. Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear. J Comp Neurol. 2002;442(4):378–91.
Article
CAS
PubMed
Google Scholar
Yu WM, Appler JM, Kim YH, Nishitani AM, Holt JR, Goodrich LV. A Gata3-Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. Elife. 2013;2: e01341.
Article
PubMed
PubMed Central
CAS
Google Scholar
D’Amico-Martel A, Noden DM. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. American Journal of Anatomy. 1983;166(4):445–68.
Article
CAS
Google Scholar
Sandell LL, Butler Tjaden NE, Barlow AJ, Trainor PA. Cochleovestibular nerve development is integrated with migratory neural crest cells. Dev Biol. 2014;385(2):200–10.
Article
CAS
PubMed
Google Scholar
Locher H, de Groot JC, van Iperen L, Huisman MA, Frijns JH, Chuva de Sousa Lopes SM. Distribution and development of peripheral glial cells in the human fetal cochlea. PLoS One. 2014;9(1):e88066.
Article
PubMed
PubMed Central
CAS
Google Scholar
Streeter GL. On the development of the membranous labyrinth and the acoustic and facial nerves in the human embryo. American Journal of Anatomy. 1906;6(1):139-U5.
Article
Google Scholar
Lim R, Brichta AM. Anatomical and physiological development of the human inner ear. Hear Res. 2016;338:9–21.
Article
CAS
PubMed
Google Scholar
Pujol R, Lavigne-Rebillard M. Early stages of innervation and sensory cell differentiation in the human fetal organ of Corti. Acta Otolaryngol Suppl. 1985;423:43–50.
Article
CAS
PubMed
Google Scholar
Lavigne-Rebillard M, Pujol R. Surface aspects of the developing human organ of Corti. Acta Otolaryngol Suppl. 1987;436(sup436):43–50.
Article
CAS
PubMed
Google Scholar
Hall JW 3rd. Development of the ear and hearing. J Perinatol. 2000;20(8 Pt 2):S12-20.
Article
PubMed
Google Scholar
Cantos R, Cole LK, Acampora D, Simeone A, Wu DK. Patterning of the mammalian cochlea. Proc Natl Acad Sci U S A. 2000;97(22):11707–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelley MW. Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci. 2006;7(11):837–49.
Article
CAS
PubMed
Google Scholar
Brooker R, Hozumi K, Lewis J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development. 2006;133(7):1277–86.
Article
CAS
PubMed
Google Scholar
Vendrell V, Lopez-Hernandez I, Duran Alonso MB, Feijoo-Redondo A, Abello G, Galvez H, et al. Otx2 is a target of N-myc and acts as a suppressor of sensory development in the mammalian cochlea. Development. 2015;142(16):2792–800.
CAS
PubMed
Google Scholar
Pechriggl EJ, Bitsche M, Glueckert R, Rask-Andersen H, Blumer MJ, Schrott-Fischer A, et al. Development of the innervation of the human inner ear. Dev Neurobiol. 2015;75(7):683–702.
Article
CAS
PubMed
Google Scholar
Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol. 2010;10(1):89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP, Mantero S, et al. Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development. 1999;126(17):3795–809.
Article
CAS
PubMed
Google Scholar
Robledo RF, Lufkin T. Dlx5 and Dlx6 homeobox genes are required for specification of the mammalian vestibular apparatus. Genesis. 2006;44(9):425–37.
Article
PubMed
Google Scholar
Hafidi A, Despres G, Romand R. Ontogenesis of type II spiral ganglion neurons during development: peripherin immunohistochemistry. Int J Dev Neurosci. 1993;11(4):507–12.
Article
CAS
PubMed
Google Scholar
Kim KK, Adelstein RS, Kawamoto S. Identification of Neuronal Nuclei (NeuN) as Fox-3, a New Member of the Fox-1 Gene Family of Splicing Factors. J Biol Chem. 2009;284(45):31052–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992;116(1):201–11.
Article
CAS
PubMed
Google Scholar
Nishimura K, Noda T, Dabdoub A. Dynamic Expression of Sox2, Gata3, and Prox1 during Primary Auditory Neuron Development in the Mammalian Cochlea. PLoS ONE. 2017;12(1): e0170568.
Article
PubMed
PubMed Central
CAS
Google Scholar
van den Ameele J, Tiberi L, Vanderhaeghen P, Espuny-Camacho I. Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends Neurosci. 2014;37(6):334–42.
Article
PubMed
CAS
Google Scholar
Matsuda M, Hayashi H, Garcia-Ojalvo J, Yoshioka-Kobayashi K, Kageyama R, Yamanaka Y, et al. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science. 2020;369(6510):1450–5.
Article
CAS
PubMed
Google Scholar
Ebisuya M, Briscoe J. What does time mean in development? Development. 2018;145(12):dev164368.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oates AC, Morelli LG, Ares S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development. 2012;139(4):625–39.
Article
CAS
PubMed
Google Scholar
Mizutari K, Fujioka M, Hosoya M, Bramhall N, Okano HJ, Okano H, et al. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron. 2013;77(1):58–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLean WJ, Yin X, Lu L, Lenz DR, McLean D, Langer R, et al. Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells. Cell Rep. 2017;18(8):1917–29.
Article
CAS
PubMed
PubMed Central
Google Scholar