Guido W. Refinement of the retinogeniculate pathway. J Physiol-London. 2008;586(18):4357–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong YK, Chen C. Wiring and rewiring of the retinogeniculate synapse. Curr Opin Neurobiol. 2011;21(2):228–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huberman AD, Feller MB, Chapman B. Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci. 2008;31:479–509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guido W. Development, form, and function of the mouse visual thalamus. J Neurophysio. 2018;120(1):211–25.
Article
CAS
Google Scholar
Bickford ME, Slusarczyk A, Dilger EK, Krahe TE, Kucuk C, Guido W. Synaptic development of the mouse dorsal lateral geniculate nucleus. J Comp Neurol. 2010;518(5):622–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherman SM, Koch C. The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Exp Brain Res. 1986;63(1):1–20.
Article
CAS
PubMed
Google Scholar
Sherman SM. Dual response modes in lateral geniculate neurons: mechanisms and functions. Vis Neurosci. 1996;13(2):205–13.
Article
CAS
PubMed
Google Scholar
Jacobs EC, Campagnoni C, Kampf K, Reyes SD, Kalra V, Handley V, Xie YY, Hong-Hu Y, Spreur V, Fisher RS, Campagoni AT. Visualization of corticofugal projections during early cortical development in a tau-GFP-transgenic mouse. Eur J Neurosci. 2007;25(1):17–30.
Article
PubMed
Google Scholar
Seabrook TA, El-Danaf RN, Krahe TE, Fox MA, Guido W. Retinal input regulates the timing of corticogeniculate innervation. J Neurosci. 2013;33(24):10085–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grant E, Hoerder-Suabedissen A, Molnar Z. The regulation of corticofugal fiber targeting by retinal inputs. Cereb Cortex. 2016;26(3):1336–48.
Article
PubMed
PubMed Central
Google Scholar
Brooks JM, Su J, Levy C, Wang JS, Seabrook TS, Guido W, Fox MA. A molecular mechanism regulating the timing of corticogeniculate innervation. Cell Rep. 2013;5(3):573–81.
Article
CAS
PubMed
Google Scholar
Erisir A, Van Horn SC, Sherman SM. Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proc Natl Acad Sci U S A. 1997;94(4):1517–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu SM, Guido W, Sherman SM. The brain-stem parabrachial region controls mode of response to visual stimulation of neurons in the cat's lateral geniculate nucleus. Vis Neurosci. 1993;10(4):631–42.
Article
CAS
PubMed
Google Scholar
Gut NK, Winn P. The pedunculopontine tegmental nucleus: a functional hypothesis from the comparative literature. Mov Disord. 2016;31(5):615–24.
Article
PubMed
PubMed Central
Google Scholar
Mena-Segovia J, Bolam JP. Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron. 2017;94:7–18.
Article
CAS
PubMed
Google Scholar
Cui H, Malpeli JG. Activity in the parabigeminal nucleus during eye movements directed at moving and stationary targets. J Neurophysiol. 2003;89(6):3128–42.
Article
PubMed
Google Scholar
Carden WB, Datskovskaia A, Guido W, Godwin DW, Bickford ME. Development of the cholinergic, nitrergic, and GABAergic innervation of the cat dorsal lateral geniculate nucleus. J Comp Neurol. 2000;418:65–80.
Article
CAS
PubMed
Google Scholar
Ballesteros JM, Van Der List DA, Chalupa LM. Formation of eye-specific retinogeniculate projections occurs prior to the innervation of the dorsal lateral geniculate nucleus by cholinergic fibers. Thalamus Relat Syst. 2005;3(2):157–63.
Article
PubMed
PubMed Central
Google Scholar
Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH. The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol. 1987;262(1):105–24.
Article
CAS
PubMed
Google Scholar
Harting JK, Van Lieshout DP, Hashikawa T, Weber JT. The parabigeminogeniculate projection: connectional studies in eight mammals. J Comp Neurol. 1991;305(4):559–81.
Article
CAS
PubMed
Google Scholar
Fitzpatrick D, Conley M, Luppino G, Matelli M, Diamond IT. Cholinergic projections from the midbrain reticular formation and the parabigeminal nucleus to the lateral geniculate nucleus in the tree shrew. J Comp Neurol. 1988;272(1):43–67.
Article
CAS
PubMed
Google Scholar
Sefton AJ, Martin PR. Relation of the parabigeminal nucleus to the superior colliculus and dorsal lateral geniculate nucleus in the hooded rat. Exp Brain Res. 1984;56(1):144–8.
Article
CAS
PubMed
Google Scholar
Hashikawa T, Lieshout DV, Harting JK. Projections from the parabigeminal nucleus to the dorsal lateral geniculate nucleus in the tree shrew tupaia glis. J Comp Neurol. 1986;246:382–94.
Article
CAS
PubMed
Google Scholar
Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwata HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H. A robust and high-throughput cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13(1):133–40.
Article
CAS
PubMed
Google Scholar
Madisen L, Mao T, Koch H, Zhuo J, Berenyi A, Fujisawa S, Hsu YA, Garcia AJ, Gu X, Zanella S, Kidney J, Gu H, Mao Y, Hooks BM, Boyden ES, Buzsáki G, Ramirez JM, Jones AR, Svoboda K, Han X, Turner EE, Zeng H. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci. 2012;15:793–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, Choi MJ, Lauzon D, Lowell BB. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 2011;13(2):195–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Yin D, Wang T, Guo W, Dong H, Xu Q, Luo Y, Cherasse Y, Lazarus M, Qiu Z, Lu J, Qu W, Huang Z. Basal forebrain cholinergic neurons primarily contribute to inhibition of electroencephalogram delta activity, rather than inducing behavioral wakefulness in mice. Neuropsychopharmacology. 2016;41:2133–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cox J, Pinto L, Dan Y. Calcium imaging of sleep–wake related neuronal activity in the dorsal pons. Nat Commun. 2016;7:e10763.
Article
CAS
Google Scholar
Higley MJ, Gittis AH, Oldenburg IA, Balthasar N, Seal RP, Edwards RH, Lowell BB, Kreitzer AC, Sabatini BL. Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum. PLoS One. 2011;6(4):e19155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L. Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 2001;15(1):24–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T. Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development. 1998;125(23):4821–33.
CAS
PubMed
Google Scholar
El-Danaf RN, Krahe TE, Dilger EK, Bickford ME, Fox MA, Guido W. Developmental remodeling of relay cells in the dorsal lateral geniculate nucleus in the absence of retinal input. Neural Dev. 2015;10:19.
Article
PubMed
PubMed Central
Google Scholar
Hammer S, Carrillo GL, Govindaiah G, Monavarfeshani A, Bircher JS, Su J, Guido W, Fox MA. Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamus. Neural Dev. 2014;9:16. https://doi.org/10.1186/1749-8104-9-16.
Article
PubMed
PubMed Central
Google Scholar
Monavarfeshani A, Stanton G, Van Name J, Su K, Mills WA, Swilling K, Kerr A, Huebschman NA, Su J, Fox MA. LRRTM1 underlies synaptic convergence in visual thalamus. elife. 2018;7:e33498.
Article
PubMed
PubMed Central
Google Scholar
Jaubert-Miazza L, Green E, Lo FS, Bui K, Mills J, Guido W. Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci. 2005;22(5):661–76.
Article
PubMed
Google Scholar
Dilger EK, Krahe TE, Morhardt DR, Seabrook TA, Shin HS, Guido W. Absence of plateau potentials in dLGN cells leads to a breakdown in retinogeniculate refinement. J Neurosci. 2015;35(8):3652–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Demas J, Sagdullaev BT, Green E, Jaubert-Miazza L, McCall MA, Gregg RG, Wong RO, Guido W. Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity. Neuron. 2006;50:247–59.
Article
CAS
PubMed
Google Scholar
Fitzpatrick D, Diamond IT, Raczkowski D. Cholinergic and monoaminergic innervation of the cat’s thalamus: comparison of the lateral geniculate nucleus with other principal sensory nuclei. J Comp Neurol. 1989;288:647–75.
Article
CAS
PubMed
Google Scholar
Broadwell RD, Bleier R. A cytoarchitectonic atlas of the mouse hypothalamus. J Comp Neurol. 1976;167(3):315–39.
Article
CAS
PubMed
Google Scholar
Watanabe K, Kawana E. Efferent projections of the parabigeminal nucleus in rats: a horseradish peroxidase (HRP) study. Brain Res. 1979;168(1):1–11.
Article
CAS
PubMed
Google Scholar
Cirelli C, Tononi G. Cortical development, electroencephalogram rhythms, and the sleep/wake cycle. Biol Psychiatry. 2015;77(12):1071–8.
Article
PubMed
Google Scholar
Breese GR, Traylor TD. Developmental characteristics of brain catecholamines and tyrosine hydroxylase in the rat: effects of 6-hydroxydopamine. Br J Pharmacol. 1972;44(2):210–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lidov HG, Molliver ME. Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res Bull. 1982;9:559–604.
Article
CAS
PubMed
Google Scholar
Yamamoto Y, Ueta Y, Hara Y, Serino R, Nomura M, Shibuya I, Shirahata A, Yamashita H. Postnatal development of orexin/hypocretin in rats. Brain Res Mol Brain Res. 2000;78:108–19.
Article
CAS
PubMed
Google Scholar
Robertson RT, Baratta J, Yu J, Guthrie KM. A role for neurotrophin-3 in targeting developing cholinergic axon projections to cerebral cortex. Neuroscience. 2006;143(2):523–39.
Article
CAS
PubMed
Google Scholar
Mu JS, Li WP, Yao ZB, Zhou XF. Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res. 1999;835(2):259–65.
Article
CAS
PubMed
Google Scholar
Kishino A, Ishige Y, Tatsuno T, Nakayama C, Noguchi H. BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth. Exp Neurol. 1997;144(2):273–86.
Article
CAS
PubMed
Google Scholar
Bartheld CS, Byers MR, Williams R, Bothwell M. Anterograde transport of neurotrophins and axodendritic transfer in the developing visual system. Nature. 1996;379:830–3.
Article
Google Scholar
Butowt R, Bartheld CS. Anterograde axonal transport of BDNF and NT-3 by retinal ganglion cells: roles of neurotrophin receptors. Mol Cell Neurosci. 2005;29(1):11–25.
Article
CAS
PubMed
Google Scholar
Pollerberg GE, Thelen K, Theiss MO, Hochlehnert BC. The role of cell adhesion molecules for navigating axons: density matters. Mech Dev. 2013;130:359–72.
Article
CAS
PubMed
Google Scholar
Bickford ME, Zhou N, Krahe TE, Govindaiah G, Guido W. Retinal and tectal "driver-like" inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J Neurosci. 2015;35(29):10523–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diamond IT, Fitzpatrick D, Conley M. A projection from the parabigeminal nucleus to the pulvinar nucleus in galago. J Comp Neurol. 1992;316(3):375–82.
Article
CAS
PubMed
Google Scholar
Harting JK, Hashikawa T, Lieshout DV. Laminar distribution of tectal, parabigeminal and pretectal inputs to the primate dorsal lateral geniculate nucleus: connectional studies in galago crassicaudatus. Brain Res. 1986;366:358–63.
Article
CAS
PubMed
Google Scholar
Reese BE. 'Hidden lamination' in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat. Brain Res. 1988;472:119–37.
Article
CAS
PubMed
Google Scholar
Cruz-Martin A, El-Danaf RN, Osakada F, Sriram B, Dhande OS, Nguyen PL, Callaway EM, Ghosh A, Huberman AD. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature. 2014;507(7492):358–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfeiffenberger C, Yamada J, Feldheim DA. Ephrin-as and patterned retinal activity act together in the development of topographic maps in the primary visual system. J Neurosci. 2006;26(50):12873–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piscopo DM, El-Danaf RN, Huberman AD, Niell CM. Diverse visual features encoded in mouse lateral geniculate nucleus. J Neurosci. 2013;33(11):4642–56.
Article
CAS
PubMed
PubMed Central
Google Scholar