Deneris ES, Hobert O. Maintenance of postmitotic neuronal cell identity. Nat Neurosci. 2014;17:899–907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spitzer NC. Activity-dependent neurotransmitter respecification. Nat Rev Neurosci. 2012;13:94–106.
CAS
PubMed
PubMed Central
Google Scholar
Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron. 2013;78:510–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pittenger C, Bloch MH, Williams K. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacol Ther. 2011;132:314–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue M, Atallah BV, Scanziani M. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature. 2014;511:596–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zadori D, Veres G, Szalardy L, Klivenyi P, Toldi J, Vecsei L. Glutamatergic dysfunctioning in Alzheimer’s disease and related therapeutic targets. J Alzheimer’s Dis. 2014;42:177–87.
Google Scholar
Batista MF, Lewis KE. Pax2/8 act redundantly to specify glycinergic and GABAergic fates of multiple spinal interneurons. Dev Biol. 2008;323:88–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, et al. Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat Neurosci. 2005;8:1510–5.
Article
CAS
PubMed
Google Scholar
Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma Q, Goulding M. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat Neurosci. 2006;9:770–8.
Article
CAS
PubMed
Google Scholar
Glasgow SM, Henke RM, Macdonald RJ, Wright CVE, Johnson JE. Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development. 2005;132:5461–9.
Article
CAS
PubMed
Google Scholar
Juárez-Morales JL, Schulte CJ, Pezoa SA, Vallejo GK, Hilinski WC, England SJ, et al. Evx1 and Evx2 specify excitatory neurotransmitter fates and suppress inhibitory fates through a Pax2-independent mechanism. Neural Dev. 2016;11:5.
Article
PubMed
PubMed Central
Google Scholar
Moran-Rivard L, Kagawa T, Saueressig H, Gross MK, Burrill J, Goulding M. Evx1 is a postmitotic determinant of v0 interneuron identity in the spinal cord. Neuron. 2001;29:385–99.
Article
CAS
PubMed
Google Scholar
Pillai A, Mansouri A, Behringer R, Westphal H, Goulding M. Lhx1 and Lhx5 maintain the inhibitory-neurotransmitter status of interneurons in the dorsal spinal cord. Development. 2007;134:357–66.
Article
CAS
PubMed
Google Scholar
Simon HH, Saueressig H, Wurst W, Goulding MD, O’Leary DD. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci. 2001;21:3126–34.
CAS
PubMed
Google Scholar
Albéri L, Sgadò P, Simon HH. Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development. 2004;131:3229–36.
Article
PubMed
Google Scholar
Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A, Gray PA, et al. Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat Neurosci. 2004;7:510–7.
Article
CAS
PubMed
Google Scholar
Huang M, Huang T, Xiang Y, Xie Z, Chen Y, Yan R, et al. Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev Biol. 2008;322:394–405.
Article
CAS
PubMed
Google Scholar
Szabo NE, da Silva RV, Sotocinal SG, Zeilhofer HU, Mogil JS, Kania A. Hoxb8 intersection defines a role for lmx1b in excitatory dorsal horn neuron development, spinofugal connectivity, and nociception. J. Neurosci. 2015;35:5233–46.
Article
CAS
Google Scholar
Zhao Z-Q, Scott M, Chiechio S, Wang J-S, Renner KJ, Gereau RW, et al. Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J Neurosci. 2006;26:12781–8.
Article
CAS
PubMed
Google Scholar
Ding Y-Q, Marklund U, Yuan W, Yin J, Wegman L, Ericson J, et al. Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci. 2003;6:933–8.
Article
CAS
PubMed
Google Scholar
Filippi A, Dürr K, Ryu S, Willaredt M, Holzschuh J, Driever W. Expression and function of nr4a2, lmx1b, and pitx3 in zebrafish dopaminergic and noradrenergic neuronal development. Dev Biol. 2007;7:135.
Google Scholar
Smidt MP, Asbreuk CH, Cox JJ, Chen H, Johnson RL, Burbach JP. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci. 2000;3:337–41.
Article
CAS
PubMed
Google Scholar
O’Hara FP, Beck E, Barr LK, Wong LL, Kessler DS, Riddle RD. Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development. 2005;132:3163–73.
Article
PubMed
PubMed Central
Google Scholar
McMahon C, Gestri G, Wilson SW, Link B a. Lmx1b is essential for survival of periocular mesenchymal cells and influences Fgf-mediated retinal patterning in zebrafish. Dev Biol. 2009;332:287–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen JK, et al. Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson’s disease. Nat Neurosci. 2015;18:826–35.
Article
CAS
PubMed
Google Scholar
Avaron F, Thaëron-Antono C, Beck CW, Borday-Birraux V, Géraudie J, Casane D, et al. Comparison of even-skipped related gene expression pattern in vertebrates shows an association between expression domain loss and modification of selective constraints on sequences. Evol Dev. 2003;5:145–56.
Article
CAS
PubMed
Google Scholar
Dollé P, Fraulob V, Duboule D. Developmental expression of the mouse Evx-2 gene: relationship with the evolution of the HOM/Hox complex. Dev Supp. 1994;143–53. http://www.ncbi.nlm.n2ih.gov/pubmed/7579515.
Griener A, Zhang W, Kao H, Wagner C, Gosgnach S. Probing diversity within subpopulations of locomotor-related V0 interneurons. Dev Neurobiol. 2015;75:1189–203.
Article
PubMed
Google Scholar
Sordino P, Duboule D, Kondo T. Zebrafish Hoxa and Evx-2 genes: Cloning, developmental expression and implications for the functional evolution of posterior Hox genes. Mech Dev. 1996;59:165–75.
Article
CAS
PubMed
Google Scholar
Thaëron C, Avaron F, Casane D, Borday V, Thisse B, Thisse C, et al. Zebrafish evx1 is dynamically expressed during embryogenesis in subsets of interneurones, posterior gut and urogenital system. Mech Dev. 2000;99:167–72.
Article
PubMed
Google Scholar
Satou C, Kimura Y, Higashijima S-I. Generation of multiple classes of v0 neurons in zebrafish spinal cord: progenitor heterogeneity and temporal control of neuronal diversity. J Neurosci. 2012;32:1771–83.
Article
CAS
PubMed
Google Scholar
Dai JX, Hu ZL, Shi M, Guo C, Ding YQ. Postnatal ontogeny of the transcription factor Lmx1b in the mouse central nervous system. J Comp Neurol. 2008;509:341–55.
Article
CAS
PubMed
Google Scholar
Kimura Y, Okamura Y, Higashijima S. alx, a zebrafish homolog of Chx10, marks ipsilateral descending excitatory interneurons that participate in the regulation of spinal locomotor circuits. J Neurosci. 2006;26:5684–97.
Article
CAS
PubMed
Google Scholar
Karlsson J, von Hofsten J, Olsson PE. Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol. 2001;3:522–7.
Article
CAS
PubMed
Google Scholar
Whittaker JR. An analysis of melanogenesis in differentiating pigment cells of ascidian embryos. Dev Biol. 1966;14:1–39.
Article
CAS
PubMed
Google Scholar
Epping JJ. Melanogenesis in amphibians.I.A study of the fine structure of the normal and phenylthiourea treated pigmented epithelium in Rana pipiens tadpole eyes. Cell Tissue Res. 1970;103:238–46.
Google Scholar
Schulte CJ, Allen C, England SJ, Juárez-Morales JL, Lewis KE. Evx1 is required for joint formation in zebrafish fin dermoskeleton. Dev Dyn. 2011;240:1240–8.
Article
CAS
PubMed
Google Scholar
Schibler A, Malicki J. A screen for genetic defects of the zebrafish ear. Mech Dev. 2007;124:592–604.
Article
CAS
PubMed
Google Scholar
Obholzer N, Swinburne IA, Schwab E, Nechiporuk AV, Nicolson T, Megason SG. Rapid positional cloning of zebrafish mutations by linkage and homozygosity mapping using whole-genome sequencing. Development. 2012;139:4280–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F. A transcription activator-like effector toolbox for genome engineering. Nat Protoc. 2012;7:171–92.
Article
CAS
PubMed
Google Scholar
Truett G, Heeger P, Mynatt R, Truett A. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques. 2000;29:29–30.
Google Scholar
Cerda GA, Hargrave M, Lewis KE. RNA profiling of FAC-sorted neurons from the developing zebrafish spinal cord. Dev Dyn. 2009;238:150–61.
Article
CAS
PubMed
Google Scholar
England SJ, Hilinski WC, de Jager S, Andrzejczuk L, Campbell P, Chowdhury T, et al. Identifying transcription factors expressed by ventral spinal cord interneurons [Internet]. ZFIN on-line Publ. 2014. Available from: http://zfin.org/ZDB-PUB-140822-10.
Park HC, Kim CH, Bae YK, Yeo SY, Kim SH, Hong SK, et al. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol. 2000;227:279–93.
Article
CAS
PubMed
Google Scholar
Montaner D, Tárraga J, Huerta-Cepas J, Burguet J, Vaquerizas JM, Conde L, et al. Next station in microarray data analysis: GEPAS. Nucleic Acids Res. 2006;34:W486–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tárraga J, Medina I, Carbonell J, Huerta-Cepas J, Minguez P, Alloza E, et al. GEPAS, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Res. 2008;36:308–14.
Article
Google Scholar
Tan PK, Downey TJ, Spitznagel EL, Xu P, Fu D, Dimitrov DS, et al. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res. 2003;31:5676–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheadle C, Vawter MP, Freed WJ, Becker KG. Analysis of microarray data using Z score transformation. J Mol Diagn. 2003;5:73–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sehgal M, Gupta R, Moussa A, Singh TR. An integrative approach for mapping differentially expressed genes and network components using novel parameters to elucidate key regulatory genes in colorectal cancer. PLoS One. 2015;10:1–18.
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser. 1995;57:289–300.
Google Scholar
Armant O, März M, Schmidt R, Ferg M, Diotel N, Ertzer R, et al. Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos. Dev Biol. 2013;380:351–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batista MF, Jacobstein J, Lewis KE. Zebrafish V2 cells develop into excitatory CiD and Notch signalling dependent inhibitory VeLD interneurons. Dev Biol. 2008;322:263–75.
Article
CAS
PubMed
Google Scholar
Concordet JP, Lewis KE, Moore JW, Goodrich LV, Johnson RL, Scott MP, et al. Spatial regulation of a zebrafish patched homologue reflects the roles of sonic hedgehog and protein kinase A in neural tube and somite patterning. Development. 1996;122:2835–46.
CAS
PubMed
Google Scholar
Ochi H, Westerfield M. Lbx2 regulates formation of myofibrils. Dev Biol. 2009;9:13.
Google Scholar
Cox KH, DeLeon DV, Angerer LM, Angerer RC. Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol. 1984;101:485–502.
Article
CAS
PubMed
Google Scholar
Higashijima S-I, Mandel G, Fetcho JR. Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. J Comp Neurol. 2004;480:1–18.
Article
CAS
PubMed
Google Scholar
Higashijima S-I, Schaefer M, Fetcho JR. Neurotransmitter properties of spinal interneurons in embryonic and larval zebrafish. J Comp Neurol. 2004;480:19–37.
Article
CAS
PubMed
Google Scholar
Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2005;11:36–43.
Google Scholar
England S, Batista MF, Mich JK, Chen JK, Lewis KE. Roles of Hedgehog pathway components and retinoic acid signalling in specifying zebrafish ventral spinal cord neurons. Development. 2011;138:5121–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z-F, Rebelo S, White F, Malmberg AB, Baba H, Lima D, et al. The paired homeodomain protein DRG11 is required for the projection of cutaneous sensory afferent fibers to the dorsal spinal cord. Neuron. 2001;31:59–73.
Article
CAS
PubMed
Google Scholar
Chizhikov VV, Millen KJ. Control of roof plate development and signaling by Lmx1b in the caudal vertebrate CNS. J Neurosci. 2004;24:5694–703.
Article
CAS
PubMed
Google Scholar
Ding Y-Q, Yin J, Kania A, Zhao Z-Q, Johnson RL, Chen Z-F. Lmx1b controls the differentiation and migration of the superficial dorsal horn neurons of the spinal cord. Development. 2004;131:3693–703.
Article
CAS
PubMed
Google Scholar
Müller T, Brohmann H, Pierani A, Heppenstall PA, Lewin GR, Jessell TM, et al. The homeodomain factor lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron. 2002;34:551–62.
Article
PubMed
Google Scholar
Gross MK, Dottori M, Goulding M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron. 2002;34:535–49.
Article
CAS
PubMed
Google Scholar
Bae Y-K, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, et al. Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol. 2009;330:406–26.
Article
CAS
PubMed
Google Scholar
Kani S, Bae YK, Shimizu T, Tanabe K, Satou C, Parsons MJ, et al. Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev Biol. 2010;343:1–17.
Article
CAS
PubMed
Google Scholar
Kinkhabwala A, Riley M, Koyama M, Monen J, Satou C, Kimura Y. A structural and functional ground plan for neurons in the hindbrain of zebrafish. PNAS. 2010;108:1164–9.
Article
Google Scholar
Sagne C, El Mestikawy S, Isambert M-F, Hamon M, Henry J-P, Giros B, et al. Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases. FEBS Lett. 1997;417:177–83.
Article
CAS
PubMed
Google Scholar
Erlander MG, Tillakaratne NJK, Feldblum S, Patel N, Tobin AJ. Two genes encode distinct gluamate decarboxylases. Neuron. 1991;7:91–100.
Article
CAS
PubMed
Google Scholar
Kaufman DL, Houser CR, Tobin AJ. Two forms of the y-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactors interactions. J Neurochem. 1991;56:720–3.
Article
CAS
PubMed
Google Scholar
Martin SC, Heinrich G, Sandell JH. Sequence and expression of glutamic acid decarboxylase isoforms in the developing zebrafish. J Comp Neurol. 1998;396:253–66.
Article
CAS
PubMed
Google Scholar
Jursky F, Nelson N. Localization of glycine neurotransmitter trasnsporter (GLYT2) reveals correlation with the distribution of glycine receptor. J Neurochem. 1995;66:589–98.
Google Scholar
Luque JM, Nelson N, Richards JG. Cellular expression of glycine transporter 2 messenger RNA exclusively in rat hindbrain and spinal cord. Neuroscience. 1995;64:525–35.
Article
CAS
PubMed
Google Scholar
Zafra F, Aragón C, Olivares L, Danbolt NC, Giménez C, Storm-Mathisen J. Glycine transporters are differentially expressed among CNS cells. J Neurosci. 1995;15:3952–69.
CAS
PubMed
Google Scholar
Zafra F, Gomeza J, Olivares L, Aragon C, Gimenez C. Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. Eur J Neurosci. 1995;7:1342–52.
Article
CAS
PubMed
Google Scholar
Chen W, Burgess S, Hopkins N. Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. Development. 2001;128:2385–96.
CAS
PubMed
Google Scholar
Jette CA, Flanagan A, Ryan J, Pyati UJ, Carbonneau S, Stewart RA, et al. BIM and other BCL-2 family proteins exhibit cross-species conservation of function between zebrafish and mammals. Cell Death Differ. 2008;15:1063–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrallo-Gimeno A, Holzschuh J, Driever W, Knapik EW. Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function. Development. 2004;131:1463–77.
Article
CAS
PubMed
Google Scholar
Berry FB, Skarie JM, Mirzayans F, Fortin Y, Hudson TJ, Raymond V, et al. FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A. Hum Mol Genet. 2008;17:490–505.
Article
CAS
Google Scholar
Chen HL, Yuh CH, Wu KK. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis. PLoS One. 2010;5:e9318.
Article
PubMed
PubMed Central
Google Scholar
Yeh LK, Liu CY, Chien CL, Converse RL, Kao WWY, Chen MS, et al. Molecular analysis and characterization of zebrafish Keratocan (zKera) gene. J Biol Chem. 2008;283:506–17.
Article
CAS
PubMed
Google Scholar
Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R, et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell. 2008;133:864–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorrells S, Carbonneau S, Harrington E, Chen AT, Hast B, Milash B, et al. Ccdc94 protects cells from ionizing radiation by inhibiting the xxpression of p53. PLoS Genet. 2012;8:e1002922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorrells S, Toruno C, Stewart RA, Jette C. Analysis of apoptosis in zebrafish embryos by whole-mount immunofluorescence to detect activated Caspase 3. J Vis Exp. 2013;20:e51060.
Google Scholar
Miyasaka N, Morimoto K, Tsubokawa T, Higashijima S, Okamoto H, Yoshihara Y. From the olfactory bulb to higher brain centers: genetic visualization of secondary olfactory pathways in zebrafish. J Neurosci. 2009;29:4756–67.
Article
CAS
PubMed
Google Scholar
Koyama M, Kinkhabwala A, Satou C, Higashijima S, Fetcho J. Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain. PNAS. 2011;108:1–6.
Article
Google Scholar
Pierani A, Moran-Rivard L, Sunshine MJ, Littman DR, Goulding M, Jessell TM. Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron. 2001;29:367–84.
Article
CAS
PubMed
Google Scholar
Tiret L, Le Mouellic H, Maury M, Brûlet P. Increased apoptosis of motoneurons and altered somatotopic maps in the brachial spinal cord of Hoxc-8-deficient mice. Development. 1998;125:279–91.
CAS
PubMed
Google Scholar
Ross SE, Mardinly AR, McCord AE, Zurawski J, Cohen S, Jung C, et al. Loss of inhibitory interneurons in the dorsal spinal cord and elevated Itch in Bhlhb5 mutant mice. Neuron. 2010;65:886–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Ham TJ, Mapes J, Kokel D, Peterson RT. Live imaging of apoptotic cells in zebrafish. FASEB J. 2010;24:4336–42.
Article
PubMed
PubMed Central
Google Scholar
Yamamoto Y, Henderson CE. Patterns of programmed cell death in populations of developing spinal motoneurons in chicken, mouse, and rat. Dev Biol. 1999;214:60–71.
Article
CAS
PubMed
Google Scholar
White FA, Keller-Peck CR, Knudson CM, Korsmeyer SJ, Snider WD. Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J Neurosci. 1998;18:1428–39.
CAS
PubMed
Google Scholar
Vanderhaeghen P, Cheng H-J. Guidance molecules in axon pruning and cell death. Cold Spring Harb Perspect Biol. 2010;2:a001859.
Article
PubMed
PubMed Central
Google Scholar
Xiang C-X, Zhang K-H, Johnson RL, Jacquin MF, Chen Z-F. The transcription factor, Lmx1b, promotes a neuronal glutamate phenotype and suppresses a GABA one in the embryonic trigeminal brainstem complex. Somatosens Mot Res. 2012;29:1–12.
Article
PubMed
PubMed Central
Google Scholar
Song N-N, Xiu J-B, Huang Y, Chen J-Y, Zhang L, Gutknecht L, et al. Adult raphe-specific deletion of Lmx1b leads to central serotonin deficiency. PLoS One. 2011;6:e15998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolfe K. Robustness - it’s not where you think it is. Nat Genet. 2000;25:3–4.
Article
CAS
PubMed
Google Scholar
Postlethwait J. The zebrafish genome in context: ohnologs gone missing. J Exp Zool. 2007;308:563–77.
Article
Google Scholar
Turner J. An hereditary arthrodysplasia associated with hereditary dystrophy of the nails. JAMA. 1933;100:882–4.
Article
Google Scholar
Lucas L, Opitz JM. The nail-patella syndrome. J Pediatr. 1966;68:273–88.
Article
Google Scholar
Sweeney E, Fryer A, Mountford R, Green A, McIntosh I. Nail patella syndrome: a review of the phenotype aided by developmental biology. J Med Genet. 2003;40:153–62.
Article
CAS
PubMed
Google Scholar