Luo L. Principles of Neurobiology. 2nd ed. Boca Raton: Garland Science; 2020.
Book
Google Scholar
Skeath JB, Thor S. Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol. 2003;13:8–15.
Article
CAS
PubMed
Google Scholar
Hobert O, Westphal H. Functions of LIM-homeobox genes. Trends Genet TIG. 2000;16:75–83.
Article
CAS
PubMed
Google Scholar
Clark BS, Stein-O’Brien GL, Shiau F, Cannon GH, Davis-Marcisak E, Sherman T, et al. Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron. 2019;102:1111–1126.e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson MB, Walsh CA. Cerebral cortical neuron diversity and development at single-cell resolution. Curr Opin Neurobiol. 2017;42:9–16.
Article
PubMed
CAS
Google Scholar
Li Z, Tyler WA, Haydar TF. Lessons from single cell sequencing in CNS cell specification and function. Curr Opin Genet Dev. 2020;65:138–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang E, Ruan X, Zhu R, Wang Y, Zhang J. Values of Single-Cell RNA Sequencing in Development of Cerebral Cortex. Adv Exp Med Biol. 2020;1255:231–47.
Article
CAS
PubMed
Google Scholar
Ying P, Huang C, Wang Y, Guo X, Cao Y, Zhang Y, et al. Single-Cell RNA Sequencing of Retina:New Looks for Gene Marker and Old Diseases. Front Mol Biosci. 2021;8:699906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meistermann D, Bruneau A, Loubersac S, Reignier A, Firmin J, François-Campion V, et al. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell. 2021;S1934-5909(21)00185–5.
Google Scholar
Zheng S, Papalexi E, Butler A, Stephenson W, Satija R. Molecular transitions in early progenitors during human cord blood hematopoiesis. Mol Syst Biol. 2018;14:e8041.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou W, Yui MA, Williams BA, Yun J, Wold BJ, Cai L, et al. Single-Cell Analysis Reveals Regulatory Gene Expression Dynamics Leading to Lineage Commitment in Early T Cell Development. Cell Syst. 2019;9:321–337.e9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konstantinides N, Kapuralin K, Fadil C, Barboza L, Satija R, Desplan C. Phenotypic Convergence: Distinct Transcription Factors Regulate Common Terminal Features. Cell. 2018;174:622–635.e13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bates AS, Janssens J, Jefferis GS, Aerts S. Neuronal cell types in the fly: single-cell anatomy meets single-cell genomics. Curr Opin Neurobiol. 2019;56:125–34.
Article
CAS
PubMed
Google Scholar
Croset V, Treiber CD, Waddell S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife. 2018;7:e34550.
Article
PubMed
PubMed Central
Google Scholar
Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft Ł, et al. A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell. 2018;174:982–998.e20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Özel MN, Gibbs CS, Holguera I, Soliman M, Bonneau R, Desplan C. Coordinated control of neuronal differentiation and wiring by a sustained code of transcription factors [Internet]. bioRxiv; 2022 [cited 2022 May 2]. p. 2022.05.01.490216. Available from: https://www.biorxiv.org/content/https://doi.org/10.1101/2022.05.01.490216v1
Özel MN, Simon F, Jafari S, Holguera I, Chen Y-C, Benhra N, et al. Neuronal diversity and convergence in a visual system developmental atlas. Nature. 2021;589:88–95.
Article
PubMed
CAS
Google Scholar
Li H, Horns F, Wu B, Xie Q, Li J, Li T, et al. Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing. Cell. 2017;171:1206–1220.e22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Li T, Horns F, Li J, Xie Q, Xu C, et al. Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory Receptor Expression and Axon Targeting. Curr Biol CB. 2020;30:1189–1198.e5.
Article
CAS
PubMed
Google Scholar
McLaughlin CN, Brbić M, Xie Q, Li T, Horns F, Kolluru SS, et al. Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila. eLife. 2021;10:e63856.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Q, Brbic M, Horns F, Kolluru SS, Jones RC, Li J, et al. Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons. eLife. 2021;10:e63450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurmangaliyev YZ, Yoo J, Valdes-Aleman J, Sanfilippo P, Zipursky SL. Transcriptional Programs of Circuit Assembly in the Drosophila Visual System. Neuron. 2020;108:1045–1057.e6.
Article
CAS
PubMed
Google Scholar
Brunet Avalos C, Sprecher SG. Single-Cell Transcriptomic Reveals Dual and Multi-Transmitter Use in Neurons Across Metazoans. Front Mol Neurosci. 2021;14:623148.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marques GS, Teles-Reis J, Konstantinides N, Brito PH, Homem CCF. Fate transitions in Drosophila neural lineages: a single cell road map to mature neurons [Internet]. 2021 Jun p. 2021.06.22.449317. Available from: https://www.biorxiv.org/content/https://doi.org/10.1101/2021.06.22.449317v1
Michki NS, Li Y, Sanjasaz K, Zhao Y, Shen FY, Walker LA, et al. The molecular landscape of neural differentiation in the developing Drosophila brain revealed by targeted scRNA-seq and multi-informatic analysis. Cell Rep. 2021;35:109039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C, et al. The Drosophila embryo at single-cell transcriptome resolution. Science. 2017;358:194–9.
Article
CAS
PubMed
Google Scholar
Corrales M, Cocanougher BT, Kohn AB, Long XS, Lemire A, Cardona A, et al. A single-cell transcriptomic atlas of complete insect nervous systems across multiple life stages. Neural Dev. In press.
Chell JM, Brand AH. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell. 2010;143:1161–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otsuki L, Brand AH. Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. Science. 2018;360:99–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bier E, Vaessin H, Younger-Shepherd S, Jan LY, Jan YN. deadpan, an essential pan-neural gene in Drosophila, encodes a helix-loop-helix protein similar to the hairy gene product. Genes Dev. 1992;6:2137–51.
Article
CAS
PubMed
Google Scholar
Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell. 2008;14:535–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashraf SI, Ganguly A, Roote J, Ip YT. Worniu, a Snail family zinc-finger protein, is required for brain development in Drosophila. Dev Dyn. 2004;231:379–86.
Article
CAS
PubMed
Google Scholar
Ikeshima-Kataoka H, Skeath JB, Nabeshima Y, Doe CQ, Matsuzaki F. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature. 1997;390:625–9.
Article
CAS
PubMed
Google Scholar
Ashraf SI, Ip YT. The Snail protein family regulates neuroblast expression of inscuteable and string, genes involved in asymmetry and cell division in Drosophila. Development. 2001;128:4757–67.
Article
CAS
PubMed
Google Scholar
Caldwell MC, Datta S. Expression of cyclin E or DP/E2F rescues the G1 arrest of trol mutant neuroblasts in the Drosophila larval central nervous system. Mech Dev. 1998;79:121–30.
Article
CAS
PubMed
Google Scholar
Zhu S, Barshow S, Wildonger J, Jan LY, Jan YN. Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains. Proc Natl Acad Sci U A. 2011;108:20615–20.
Article
CAS
Google Scholar
Rives-Quinto N, Komori H, Ostgaard CM, Janssens DH, Kondo S, Dai Q, et al. Sequential activation of transcriptional repressors promotes progenitor commitment by silencing stem cell identity genes. Desplan C, Banerjee U, editors. eLife. eLife Sciences Publications, Ltd; 2020;9:e56187.
Li X, Xie Y, Zhu S. Notch maintains Drosophila type II neuroblasts by suppressing expression of the Fez transcription factor Earmuff. Dev Camb Engl. 2016;143:2511–21.
CAS
Google Scholar
Yang C-P, Samuels TJ, Huang Y, Yang L, Ish-Horowicz D, Davis I, et al. Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells. Dev Camb Engl. 2017;144:3454–64.
CAS
Google Scholar
Lane ME, Sauer K, Wallace K, Jan YN, Lehner CF, Vaessin H. Dacapo, a cyclin-dependent kinase inhibitor, stops cell proliferation during Drosophila development. Cell. 1996;87:1225–35.
Article
CAS
PubMed
Google Scholar
Monastirioti M, Giagtzoglou N, Koumbanakis KA, Zacharioudaki E, Deligiannaki M, Wech I, et al. Drosophila Hey is a target of Notch in asymmetric divisions during embryonic and larval neurogenesis. Development. 2010;137:191–201.
Robinow S, White K. Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development. J Neurobiol. 1991;22:443–61.
Article
CAS
PubMed
Google Scholar
Young JM, Armstrong JD. Building the central complex in Drosophila: the generation and development of distinct neural subsets. J Comp Neurol. 2010;518:1525–41.
Article
CAS
PubMed
Google Scholar
Samson M-L, Chalvet F. found in neurons, a third member of the Drosophila elav gene family, encodes a neuronal protein and interacts with elav. Mech Dev. 2003;120:373–83.
Article
CAS
PubMed
Google Scholar
Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Dürrbeck H, et al. Bruchpilot, a Protein with Homology to ELKS/CAST, Is Required for Structural Integrity and Function of Synaptic Active Zones in Drosophila. Neuron. 2006;49:833–44.
Article
CAS
PubMed
Google Scholar
Deitcher DL, Ueda A, Stewart BA, Burgess RW, Kidokoro Y, Schwarz TL. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci Off J Soc Neurosci. 1998;18:2028–39.
Article
CAS
Google Scholar
Xiong WC, Okano H, Patel NH, Blendy JA, Montell C. repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system. Genes Dev. 1994;8:981–94.
Article
CAS
PubMed
Google Scholar
Campbell G, Goring H, Lin T, Spana E, Andersson S, Doe CQ, et al. RK2, a glial-specific homeodomain protein required for embryonic nerve cord condensation and viability in Drosophila. Development. 1994;120:2957–66.
Article
CAS
PubMed
Google Scholar
Stork T, Sheehan A, Tasdemir-Yilmaz OE, Freeman MR. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes. Neuron. 2014;83:388–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doherty J, Logan MA, Tasdemir OE, Freeman MR. Ensheathing glia function as phagocytes in the adult Drosophila brain. J Neurosci. 2009;29:4768–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
FlyBase Reference Report: Fisher et al., 2012, BDGP insitu homepage. [cited 2022 Apr 30]. Available from: http://beta.flybase.org/reports/FBrf0219073.html
DeSalvo MK, Hindle SJ, Rusan ZM, Orng S, Eddison M, Halliwill K, et al. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes. Front Neurosci. 2014;8:346.
Article
PubMed
PubMed Central
Google Scholar
Bainton RJ, Tsai LT-Y, Schwabe T, DeSalvo M, Gaul U, Heberlein U. moody encodes two GPCRs that regulate cocaine behaviors and blood-brain barrier permeability in Drosophila. Cell. 2005;123:145–56.
Article
CAS
PubMed
Google Scholar
Noordermeer JN, Kopczynski CC, Fetter RD, Bland KS, Chen WY, Goodman CS. Wrapper, a novel member of the Ig superfamily, is expressed by midline glia and is required for them to ensheath commissural axons in Drosophila. Neuron. 1998;21:991–1001.
Article
CAS
PubMed
Google Scholar
Avet-Rochex A, Carvajal N, Christoforou CP, Yeung K, Maierbrugger KT, Hobbs C, et al. Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control. PLoS Genet. 2014;10:e1004624.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baqri R, Charan R, Schimmelpfeng K, Chavan S, Ray K. Kinesin-2 differentially regulates the anterograde axonal transports of acetylcholinesterase and choline acetyltransferase in Drosophila. J Neurobiol. 2006;66:378–92.
Article
CAS
PubMed
Google Scholar
Nässel DR, Enell LE, Santos JG, Wegener C, Johard HAD. A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci. 2008;9:90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Daniels RW, Gelfand MV, Collins CA, DiAntonio A. Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS. J Comp Neurol. 2008;508:131–52.
Article
CAS
PubMed
Google Scholar
Greer CL, Grygoruk A, Patton DE, Ley B, Romero-Calderon R, Chang H-Y, et al. A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine. J Neurobiol. 2005;64:239–58.
Article
CAS
PubMed
Google Scholar
Beall CJ, Hirsh J. Regulation of the Drosophila dopa decarboxylase gene in neuronal and glial cells. Genes Dev. 1987;1:510–20.
Article
CAS
PubMed
Google Scholar
Neckameyer WS, Coleman CM, Eadie S, Goodwin SF. Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster. Genes Brain Behav. 2007;6:756–69.
Article
CAS
PubMed
Google Scholar
Hewes RS, Park D, Gauthier SA, Schaefer AM, Taghert PH. The bHLH protein Dimmed controls neuroendocrine cell differentiation in Drosophila. Dev Camb Engl. 2003;130:1771–81.
CAS
Google Scholar
Lee GG, Kikuno K, Nair S, Park JH. Mechanisms of postecdysis-associated programmed cell death of peptidergic neurons in Drosophila melanogaster. J Comp Neurol. 2013;521:3972–91.
CAS
PubMed
Google Scholar
Díaz MM, Schlichting M, Abruzzi KC, Long X, Rosbash M. Allatostatin-C/AstC-R2 Is a Novel Pathway to Modulate the Circadian Activity Pattern in Drosophila. Curr Biol CB. 2019;29:13–22.e3.
Article
PubMed
CAS
Google Scholar
Koon AC, Ashley J, Barria R, DasGupta S, Brain R, Waddell S, et al. Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling. Nat Neurosci. 2011;14:190–9.
Article
CAS
PubMed
Google Scholar
Cole SH, Carney GE, McClung CA, Willard SS, Taylor BJ, Hirsh J. Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J Biol Chem. 2005;280:14948–55.
Article
CAS
PubMed
Google Scholar
Kim NC, Marqués G. The Ly6 neurotoxin-like molecule target of wit regulates spontaneous neurotransmitter release at the developing neuromuscular junction in Drosophila. Dev Neurobiol. 2012;72:1541–58.
Article
CAS
PubMed
Google Scholar
Murakami S, Minami-Ohtsubo M, Nakato R, Shirahige K, Tabata T. Two Components of Aversive Memory in Drosophila, Anesthesia-Sensitive and Anesthesia-Resistant Memory, Require Distinct Domains Within the Rgk1 Small GTPase. J Neurosci Off J Soc Neurosci. 2017;37:5496–510.
Article
CAS
Google Scholar
Crittenden JR, Skoulakis EM, Han KA, Kalderon D, Davis RL. Tripartite mushroom body architecture revealed by antigenic markers. Learn Mem Cold Spring Harb N. 1998;5:38–51.
Article
CAS
Google Scholar
Kahsai L, Kapan N, Dircksen H, Winther AME, Nässel DR. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides. PloS One. 2010;5:e11480.
Article
PubMed
PubMed Central
CAS
Google Scholar
Truman JW, Bate M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev Biol. 1988;125:145–57.
Article
CAS
PubMed
Google Scholar
Prokop A, Technau GM. The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Dev Camb Engl. 1991;111:79–88.
CAS
Google Scholar
Kremer MC, Jung C, Batelli S, Rubin GM, Gaul U. The glia of the adult Drosophila nervous system. Glia. 2017;65:606–38.
Article
PubMed
PubMed Central
Google Scholar
Sousa-Nunes R, Yee LL, Gould AP. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature. 2011;471:508–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebens AJ, Garren H, Cheyette BN, Zipursky SL. The Drosophila anachronism locus: a glycoprotein secreted by glia inhibits neuroblast proliferation. Cell. 1993;74:15–27.
Article
CAS
PubMed
Google Scholar
Datta S. Control of proliferation activation in quiescent neuroblasts of the Drosophila central nervous system. Development. 1995;121:1173–82.
Article
CAS
PubMed
Google Scholar
Küssel P, Frasch M. Pendulin, a Drosophila protein with cell cycle-dependent nuclear localization, is required for normal cell proliferation. J Cell Biol. 1995;129:1491–507.
Article
PubMed
Google Scholar
Török I, Strand D, Schmitt R, Tick G, Török T, Kiss I, et al. The overgrown hematopoietic organs-31 tumor suppressor gene of Drosophila encodes an Importin-like protein accumulating in the nucleus at the onset of mitosis. J Cell Biol. 1995;129:1473–89.
Article
PubMed
Google Scholar
Uv AE, Harrison EJ, Bray SJ. Tissue-specific splicing and functions of the Drosophila transcription factor Grainyhead. Mol Cell Biol. 1997;17:6727–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doe CQ. Temporal Patterning in the Drosophila CNS. Annu Rev Cell Dev Biol. 2017;33:in press.
Ren Q, Yan C-P, Liu Z, Sugino K, Mok K, He Y, et al. Stem cell intrinsic, Seven-up-triggered temporal factor gradients diversify intermediate neural progenitors. Curr Biol. 2017;in press.
Syed MH, Mark B, Doe CQ. Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity. Elife. 2017;6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28394252
Walsh KT, Doe CQ. Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. Dev Camb Engl. 2017;144:4552–62.
CAS
Google Scholar
Bayraktar OA, Doe CQ. Combinatorial temporal patterning in progenitors expands neural diversity. Nature. 2013;498:445–55.
Article
CAS
Google Scholar
Abdusselamoglu MD, Eroglu E, Burkard TR, Knoblich JA. The transcription factor odd-paired regulates temporal identity in transit-amplifying neural progenitors via an incoherent feed-forward loop. VijayRaghavan K, Wang H, Sen S, editors. eLife. 2019;8:e46566.
Almeida MS, Bray SJ. Regulation of post-embryonic neuroblasts by Drosophila Grainyhead. Mech Dev. 2005;122:1282–93.
Article
CAS
PubMed
Google Scholar
Sullivan LF, Warren TL, Doe CQ. Temporal identity establishes columnar neuron morphology, connectivity, and function in a Drosophila navigation circuit. eLife. 2019;8.
Farnsworth DR, Bayraktar OA, Doe CQ. Aging Neural Progenitors Lose Competence to Respond to Mitogenic Notch Signaling. Curr Biol. 2015;25:3058–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mark B, Lai S-L, Zarin AA, Manning L, Pollington HQ, Litwin-Kumar A, et al. A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS. eLife. 2021;10.
Tan L, Zhang KX, Pecot MY, Nagarkar-Jaiswal S, Lee PT, Takemura SY, et al. Ig Superfamily Ligand and Receptor Pairs Expressed in Synaptic Partners in Drosophila. Cell. 2015;163:1756–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen TH, Vicidomini R, Choudhury SD, Coon SL, Iben J, Brody T, et al. Single-Cell RNA Sequencing Analysis of the Drosophila Larval Ventral Cord. Curr Protoc. 2021;1:e38.
CAS
PubMed
PubMed Central
Google Scholar
Lai SL, Doe CQ. Transient nuclear Prospero induces neural progenitor quiescence. Elife. 2014;3.
Narbonne-Reveau K, Lanet E, Dillard C, Foppolo S, Chen CH, Parrinello H, et al. Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila. Elife. 2016;5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27296804
Liu Z, Yang CP, Sugino K, Fu CC, Liu LY, Yao X, et al. Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates. Science. 2015;350:317–20.
Article
CAS
PubMed
Google Scholar
Chen C-H, Luhur A, Sokol N. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine. Dev Camb Engl. 2015;142:3478–87.
CAS
Google Scholar
Cui X, Doe CQ. ming is expressed in neuroblast sublineages and regulates gene expression in the Drosophila central nervous system. Development. 1992;116:943–52.
Article
CAS
PubMed
Google Scholar
Kambadur R, Koizumi K, Stivers C, Nagle J, Poole SJ, Odenwald WF. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev. 1998;12:246–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mellerick DM, Kassis JA, Zhang SD, Odenwald WF. castor encodes a novel zinc finger protein required for the development of a subset of CNS neurons in Drosophila. Neuron. 1992;9:789–803.
Article
CAS
PubMed
Google Scholar
Dumstrei K, Wang F, Hartenstein V. Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development. J Neurosci Off J Soc Neurosci. 2003;23:3325–35.
Article
CAS
Google Scholar
Young JM, Armstrong JD. Structure of the adult central complex in Drosophila: organization of distinct neuronal subsets. J Comp Neurol. 2010;518:1500–24.
Article
CAS
PubMed
Google Scholar
Hobert O, Kratsios P. Neuronal identity control by terminal selectors in worms, flies, and chordates. Curr Opin Neurobiol. 2019;56:97–105.
Article
CAS
PubMed
Google Scholar
Lodato S, Arlotta P. Generating neuronal diversity in the mammalian cerebral cortex. Annu Rev Cell Dev Biol. 2015;31:699–720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yasugi T, Nishimura T. Temporal regulation of the generation of neuronal diversity in Drosophila. Dev Growth Differ. 2016;58:73–87.
Article
PubMed
Google Scholar
Williams EA, Jékely G. Neuronal cell types in the annelid Platynereis dumerilii. Curr Opin Neurobiol. 2019;56:106–16.
Article
CAS
PubMed
Google Scholar
Farnsworth DR, Saunders LM, Miller AC. A single-cell transcriptome atlas for zebrafish development. Dev Biol. 2020;459:100–8.
Article
CAS
PubMed
Google Scholar
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587.e29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan X, Sipe CW, Suzawa M, Bland ML, Siegrist SE. Dilp-2-mediated PI3-kinase activation coordinates reactivation of quiescent neuroblasts with growth of their glial stem cell niche. PLoS Biol. 2020;18:e3000721.
Article
CAS
PubMed
PubMed Central
Google Scholar