Gross CT, Canteras NS. The many paths to fear. Nat Rev Neurosci. 2012;13:651–8. doi:10.1038/nrn3301.
Article
CAS
PubMed
Google Scholar
Sternson SM. Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron. 2013;77:810–24. doi:10.1016/j.neuron.2013.02.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elson AE, Simerly RB. Developmental specification of metabolic circuitry. Front Neuroendocrinol. 2015. doi:10.1016/j.yfrne.2015.09.003.
Caqueret A, Yang C, Duplan S, Boucher F, Michaud JL. Looking for trouble: a search for developmental defects of the hypothalamus. Horm Res. 2005;64:222–30.
Article
CAS
PubMed
Google Scholar
Grossman SP. Role of the hypothalamus in the regulation of food and water intake. Psychol Rev. 1975;82:200–24.
Article
CAS
PubMed
Google Scholar
O’Rahilly S. Human genetics illuminates the paths to metabolic disease. Nature. 2009;462:307–14. doi:10.1038/nature08532.
Article
PubMed
Google Scholar
Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443:289–95.
Article
CAS
PubMed
Google Scholar
Saper CB. Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Prog Brain Res. 2006;153:243–52.
Article
CAS
PubMed
Google Scholar
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci. 2015;9:9. doi:10.3389/fnsys.2015.00009.
PubMed
PubMed Central
Google Scholar
Saper CB, Lowell BB. The hypothalamus. Curr Biol. 2014;24:R1111–6. doi:10.1016/j.cub.2014.10.023.
Article
CAS
PubMed
Google Scholar
Falkner AL, Lin D. Recent advances in understanding the role of the hypothalamic circuit during aggression. Front Syst Neurosci. 2014;8:168. doi:10.3389/fnsys.2014.00168.
Article
PubMed
PubMed Central
Google Scholar
Burdakov D, Alexopoulos H. Metabolic state signalling through central hypocretin/orexin neurons. Eur J Neurosci. 2004;20:3281–5.
Article
PubMed
Google Scholar
Xu X, Coats JK, Yang CF, Wang A, Ahmed OM, Alvarado M, Izumi T, Shah NM. Modular genetic control of sexually dimorphic behaviors. Cell. 2012;148:596–607. doi:10.1016/j.cell.2011.12.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee H, Kim DW, Remedios R, Anthony TE, Chang A, Madisen L, Zeng H, Anderson DJ. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature. 2014;509(7502):627–32. doi:10.1038/nature13169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nomoto K, Lima SQ. Enhanced male-evoked responses in the ventromedial hypothalamus of sexually receptive female mice. Curr Biol. 2015;25:589–94. doi:10.1016/j.cub.2014.12.048.
Article
CAS
PubMed
Google Scholar
Chatterjee M, Li JY. Patterning and compartment formation in the diencephalon. Front Neurosci. 2012;6:66. doi:10.3389/fnins.2012.00066.
Article
PubMed
PubMed Central
Google Scholar
Sokolowski K, Corbin JG. Wired for behaviors: from development to function of innate limbic system circuitry. Front Mol Neurosci. 2012;5:55. doi:10.3389/fnmol.2012.00055.
Article
PubMed
PubMed Central
Google Scholar
Bedont JL, Newman EA, Blackshaw S. Patterning, specification, and differentiation in the developing hypothalamus. Wiley Interdiscip Rev Dev Biol. 2015;4:445–68. doi:10.1002/wdev.187.
Article
PubMed
Google Scholar
Sokolowski K, Esumi S, Hirata T, Kamal Y, Tran T, Lam A, Oboti L, Brighthaupt SC, Zaghlula M, Martinez J, Ghimbovschi S, Knoblach S, Pierani A, Tamamaki N, Shah NM, Jones KS, Corbin JG. Specification of select hypothalamic circuits and innate behaviors by the embryonic patterning gene Dbx1. Neuron. 2015;86:403–16. doi:10.1016/j.neuron.2015.03.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pierani A, Moran-Rivard L, Sunshine MJ, Littman DR, Goulding M, Jessell TM. Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron. 2001;29:367–84.
Article
CAS
PubMed
Google Scholar
Hirata T, Li P, Lanuza GM, Cocas LA, Huntsman MM, Corbin JG. Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala. Nat Neurosci. 2009;12:141–9. doi:10.1038/nn.2241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vue TY, Aaker J, Taniguchi A, Kazemzadeh C, Skidmore JM, Martin DM, Martin JF, Treier M, Nakagawa Y. Characterization of progenitor domains in the developing mouse thalamus. J Comp Neurol. 2007;505(1):73–91.
Article
CAS
PubMed
Google Scholar
Lu S, Bogarad LD, Murtha MT, Ruddle FH. Expression pattern of a murine homeobox gene, Dbx, displays extreme spatial restriction in embryonic forebrain and spinal cord. Proc Natl Acad Sci U S A. 1992;89:8053–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shoji H, Ito T, Wakamatsu Y, Hayasaka N, Ohsaki K, Oyanagi M, Kominami R, Kondoh H, Takahashi N. Regionalized expression of the Dbx family homeobox genes in the embryonic CNS of the mouse. Mech Dev. 1996;56:25–39.
Article
CAS
PubMed
Google Scholar
Flames N, Pla R, Gelman DM, Rubenstein JL, Puelles L, Marín O. Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci. 2007;27:9682–95.
Article
CAS
PubMed
Google Scholar
Causeret F, Ensini M, Teissier A, Kessaris N, Richardson WD, Lucas de Couville T, Pierani A. Dbx1-expressing cells are necessary for the survival of the mammalian anterior neural and craniofacial structures. PLoS One. 2011;6:e19367. doi:10.1371/journal.pone.0019367.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurrasch DM, Cheung CC, Lee FY, Tran PV, Hata K, Ingraham HA. The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J Neurosci. 2007;27:13624–34.
Article
CAS
PubMed
Google Scholar
Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H, Avetisyan M, Qi L, Qian J, Blackshaw S. A genomic atlas of mouse hypothalamic development. Nat Neurosci. 2010;13:767–75. doi:10.1038/nn.2545.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Léger L, Boissard R, Salin P, Peyron C, Luppi PH. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 2003;4:19.
Burdakov D, Luckman SM, Verkhratsky A. Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci. 2005;360:2227–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maniam J, Morris MJ. The link between stress and feeding behaviour. Neuropharmacology. 2012;63:97–110. doi:10.1016/j.neuropharm.2012.04.017.
Article
CAS
PubMed
Google Scholar
Yeo GS, Heisler LK. Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci. 2012;15:1343–9. doi:10.1038/nn.3211.
Article
CAS
PubMed
Google Scholar
Sohn JW, Elmquist JK, Williams KW. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci. 2013;36:504–12. doi:10.1016/j.tins.2013.05.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elias CF, Lee CE, Kelly JF, Ahima RS, Kuhar M, Saper CB, Elmquist JK. Characterization of CART neurons in the rat and human hypothalamus. J Comp Neurol. 2001;432:1–19.
Article
CAS
PubMed
Google Scholar
Fort P, Salvert D, Hanriot L, Jego S, Shimizu H, Hashimoto K, Mori M, Luppi PH. The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience. 2008;155:174–81. doi:10.1016/j.neuroscience.2008.05.035.
Article
CAS
PubMed
Google Scholar
Croizier S, Franchi-Bernard G, Colard C, Poncet F, La Roche A, Risold PY. A comparative analysis shows morphofunctional differences between the rat and mouse melanin-concentrating hormone systems. PLoS One. 2010;5:e15471. doi:10.1371/journal.pone.0015471.
Article
PubMed
PubMed Central
Google Scholar
Sundvik M, Kudo H, Toivonen P, Rozov S, Chen YC, Panula P. The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish. FASEB J. 2011;25:4338–47. doi:10.1096/fj.11-188268.
Article
CAS
PubMed
Google Scholar
Dalal J, Roh JH, Maloney SE, Akuffo A, Shah S, Yuan H, Wamsley B, Jones WB, Strong C, Gray PA, et al. Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation. Genes Dev. 2013;27:565–78. doi:10.1101/gad.207654.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan-Palay V, Záborszky L, Köhler C, Goldstein M, Palay SL. Distribution of tyrosine-hydroxylase-immunoreactive neurons in the hypothalamus of rats. J Comp Neurol. 1984;227:467–96.
Article
CAS
PubMed
Google Scholar
Broberger C. Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res. 1999;848:101–13.
Article
CAS
PubMed
Google Scholar
Ovesjö ML, Gamstedt M, Collin M, Meister B. GABAergic nature of hypothalamic leptin target neurones in the ventromedial arcuate nucleus. J Neuroendocrinol. 2001;13:505–16.
Article
PubMed
Google Scholar
Lee B, Kim SG, Kim J, Choi KY, Lee S, Lee SK, Lee JW. Brain-specific homeobox factor as a target selector for glucocorticoid receptor in energy balance. Mol Cell Biol. 2013;33:2650–8. doi:10.1128/MCB.00094-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sano K, Tsuda MC, Musatov S, Sakamoto T, Ogawa S. Differential effects of site-specific knockdown of estrogen receptor α in the medial amygdala, medial pre-optic area, and ventromedial nucleus of the hypothalamus on sexual and aggressive behavior of male mice. Eur J Neurosci. 2013;37:1308–19. doi:10.1111/ejn.12131.
Article
PubMed
Google Scholar
Yang CF, Chiang MC, Gray DC, Prabhakaran M, Alvarado M, Juntti SA, Unger EK, Wells JA, Shah NM. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell. 2013;153:896–909. doi:10.1016/j.cell.2013.04.017.
Dugger BN, Morris JA, Jordan CL, Breedlove SM. Androgen receptors are required for full masculinization of the ventromedial hypothalamus (VMH) in rats. Horm Behav. 2007;51:195–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol. 1998;8:1323–6.
Article
CAS
PubMed
Google Scholar
Zervas M, Millet S, Ahn S, Joyner AL. Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron. 2004;43:345–57.
Article
CAS
PubMed
Google Scholar
Alvarez-Bolado G, Paul FA, Blaess S. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions. Neural Dev. 2012;7:4.
Article
PubMed
PubMed Central
Google Scholar
Risold PY, Croizier S, Legagneux K, Brischoux F, Fellmann D, Griffond B. The development of the MCH system. Peptides. 2009;30:1969–72. doi:10.1016/j.peptides.2009.07.016.
Article
CAS
PubMed
Google Scholar
Yang S, Lee Y, Voogt JL. Fos expression in the female rat brain during the proestrous prolactin surge and following mating. Neuroendocrinology. 1999;69:281–9.
Article
CAS
PubMed
Google Scholar
Atasoy D, Betley JN, Su HH, Sternson SM. Deconstruction of a neural circuit for hunger. Nature. 2012;488:17–177.
Article
Google Scholar
Betley JN, Cao ZF, Ritola KD, Sternson SM. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell. 2013;155:1337–50. doi:10.1016/j.cell.2013.11.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen RS, Pfaff DW. Ventromedial hypothalamic neurons in the mediation of long-lasting effects of estrogen on lordosis behavior. Prog Neurobiol. 1992;38:423–53.
Article
CAS
PubMed
Google Scholar
Silva BA, Mattucci C, Krzywkowski P, Murana E, Illarionova A, Grinevich V, Canteras NS, Ragozzino D, Gross CT. Independent hypothalamic circuits for social and predator fear. Nat Neurosci. 2013;16:1731–3. doi:10.1038/nn.3573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ. Functional identification of an aggression locus in the mouse hypothalamus. Nature. 2011;470:221–6. doi:10.1038/nature09736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canteras NS, Chiavegatto S, Ribeiro do Valle LE, Swanson LW. Severe reduction of rat defensive behavior to a predator by discrete hypothalamic chemical lesions. Brain Res Bull. 1997;44:297–305.
Article
CAS
PubMed
Google Scholar
Beijamini V, Guimarães FS. c-Fos expression increase in NADPH-diaphorase positive neurons after exposure to a live cat. Behav Brain Res. 2006;170:52–61.
Article
CAS
PubMed
Google Scholar
García AP, Aitta-aho T, Schaaf L, Heeley N, Heuschmid L, Bai Y, Apergis-Schoute J. Nicotinic α4 receptor-mediated cholinergic influences on food intake and activity patterns in hypothalamic circuits. PLoS One. 2015;10(8):e0133327. doi:10.1371/journal.pone.0133327.
Dragunow M, Faull R. The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods. 1989;29:261–5.
Article
CAS
PubMed
Google Scholar
Bullitt E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol. 1990;296:517–30.
Article
CAS
PubMed
Google Scholar
Hoch RV, Rubenstein JL, Pleasure S. Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol. 2009;20:378–86. doi:10.1016/j.semcdb.2009.02.005.
Article
CAS
PubMed
Google Scholar
Yee CL, Wang Y, Anderson S, Ekker M, Rubenstein JL. Arcuate nucleus expression of NKX2.1 and DLX and lineages expressing these transcription factors in neuropeptide Y(+), proopiomelanocortin(+), and tyrosine hydroxylase(+) neurons in neonatal and adult mice. J Comp Neurol. 2009;517:37–50. doi:10.1002/cne.22132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, Kenny CD, Christiansen LM, White RD, Edelstein EA, Coppari R, Balthasar N, Cowley MA, Chua S Jr, Elmquist JK, Lowell BB. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron. 2006;49:191–203.
Article
CAS
PubMed
Google Scholar
Ferran JL, Puelles L, Rubenstein JL. Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus. Front Neuroanat. 2015;9:46. doi:10.3389/fnana.2015.00046.
Article
PubMed
PubMed Central
Google Scholar
Batista-Brito R, Fishell G. The developmental integration of cortical interneurons into a functional network. Curr Top Dev Biol. 2009;87:81–118. doi:10.1016/S0070-2153(09)01203-4.
Article
PubMed
PubMed Central
Google Scholar
Nery S, Fishell G, Corbin JG. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci. 2002;5:1279–87.
Article
CAS
PubMed
Google Scholar
Anderson SA, Marín O, Horn C, Jennings K, Rubenstein JL. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development. 2001;128:353–63.
CAS
PubMed
Google Scholar
Shimada M, Nakamura T. Time of neuron origin in mouse hypothalamic nuclei. Exp Neurol. 1973;41:163–73.
Article
CAS
PubMed
Google Scholar
Markakis EA, Swanson LW. Spatiotemporal patterns of secretomotor neuron generation in the parvicellular neuroendocrine system. Brain Res Rev. 1997;24:255–91.
Article
CAS
PubMed
Google Scholar
Padilla SL, Carmody JS, Zeltser LM. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat Med. 2010;16:403–5. doi:10.1038/nm.2126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imwalle DB, Scordalakes EM, Rissman EF. Estrogen receptor alpha influences socially motivated behaviors. Horm Behav. 2002;42:484–91.
Article
CAS
PubMed
Google Scholar