Del Pino I, Rico B, Marín O. Neural circuit dysfunction in mouse models of neurodevelopmental disorders. Curr Opin Neurobiol. 2018;48:174–82.
Article
Google Scholar
Jessell TM, Sanes JR. Development. The decade of the developing brain. Curr. Opin. Neurobiol. 2000;10:599–611.
Article
CAS
Google Scholar
Lee KJ, Jessell TM. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303–0139, USA; 1999;22:261–94.
Wilson L, Maden M. The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev Biol. 2005;282:1–13.
Article
CAS
Google Scholar
Briscoe J, Pierani A, Jessell TM, Ericson J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell. 2000;101:435–45.
Article
CAS
Google Scholar
Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van Heyningen V, et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell. 1997;90:169–80.
Article
CAS
Google Scholar
Pierani A, Brenner-Morton S, Chiang C, Jessell TM. A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell. 1999;97:903–15.
Article
CAS
Google Scholar
Novitch BG, Chen AI, Jessell TM. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron. 2001;31:773–89.
Article
CAS
Google Scholar
Vallstedt A, Muhr J, Pattyn A, Pierani A, Mendelsohn M, Sander M, et al. Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron. 2001;31:743–55.
Article
CAS
Google Scholar
Briscoe J, Sussel L, Serup P, Hartigan-O'Connor D, Jessell TM, Rubenstein JL, et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded sonic hedgehog signalling. Nature. Nat Publ Group. 1999;398:622–7.
CAS
Google Scholar
Pabst O, Herbrand H, Takuma N, Arnold HH. NKX2 gene expression in neuroectoderm but not in mesendodermally derived structures depends on sonic hedgehog in mouse embryos. Dev Genes Evol. 2000;210:47–50.
Article
CAS
Google Scholar
Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, et al. Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature. Nature Publishing Group; 1996;383:407–413.
Qiu M, Shimamura K, Sussel L, Chen S, Rubenstein JL. Control of anteroposterior and dorsoventral domains of Nkx-6.1 gene expression relative to other Nkx genes during vertebrate CNS development. Mech Dev. 1998;72:77–88.
Article
CAS
Google Scholar
Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell. 2002;109:61–73.
Article
CAS
Google Scholar
Zannino DA, Sagerström CG. An emerging role for prdm family genes in dorsoventral patterning of the vertebrate nervous system. Neural Dev [Internet]. 2015;10:24. Available from: http://www.neuraldevelopment.com/content/10/1/24
Hohenauer T, Moore AW. The Prdm family: expanding roles in stem cells and development. Development [internet]. 2012;139:2267–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22669819.
Fog CK, Galli GG, Lund AH. PRDM proteins: important players in differentiation and disease. Bioessays [internet]. 2012;34:50–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22028065.
Chang JC, Meredith DM, Mayer PR, Borromeo MD, Lai HC, Ou Y-H, et al. Prdm13 mediates the balance of inhibitory and excitatory neurons in somatosensory circuits. Dev Cell. 2013;25:182–95 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3644180.
Article
CAS
Google Scholar
Hanotel J, Bessodes N, Thélie A, Hedderich M, Parain K, Van Driessche B, et al. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Dev Biol. 2014;386:340–57 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0012160613006817.
Article
CAS
Google Scholar
Ross SE, McCord AE, Jung C, Atan D, Mok SI, Hemberg M, et al. Bhlhb5 and Prdm8 form a repressor complex involved in neuronal circuit assembly. Neuron. 2012;73:292–303 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3269007.
Article
CAS
Google Scholar
Kinameri E, Inoue T, Aruga J, Imayoshi I, Kageyama R, Shimogori T, et al. Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. Hendricks M, editor. PLoS ONE [Internet]. 2008;3:e3859. Available from: http://dx.plos.org/10.1371/journal.pone.0003859
Zannino DA, Downes GB, Sagerström CG. prdm12b specifies the p1 progenitor domain and reveals a role for V1 interneurons in swim movements. Developmental Biology [Internet]. 2014;390:247–60. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4030435
Thelie A, Thélie A, Desiderio S, Desiderio S, Hanotel J, Hanotel J, et al. Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. Development. 2015;142:3416–28 Available from: http://dev.biologists.org/cgi/doi/10.1242/dev.121871.
Article
CAS
Google Scholar
Matsukawa S, Miwata K, Asashima M, Michiue T. The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus. Dev Biol. 2015;399:164–76 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0012160614006691.
Article
CAS
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253–310.
Article
CAS
Google Scholar
Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014;42:W401–7.
Article
CAS
Google Scholar
Maurer JM, Sagerström CG. A parental requirement for dual-specificity phosphatase 6 in zebrafish. BMC Dev Biol. 2018;18:6.
Article
Google Scholar
Gagnon JA, Valen E, Thyme SB, Huang P, Akhmetova L, Ahkmetova L, et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. Riley B, editor. PLoS ONE. 2014;9:e98186.
Hauptmann G, Gerster T. Multicolor whole-mount in situ hybridization. In: Methods Mol Biol, vol. 137. New Jersey: Humana Press; 2000. p. 139–48.
Google Scholar
Zannino DA, Appel B. Olig2+ precursors produce abducens motor neurons and oligodendrocytes in the zebrafish hindbrain. J Neurosci Society for Neuroscience. 2009;29:2322–33.
Article
CAS
Google Scholar
Ladam F, Stanney W, Donaldson IJ, Yildiz O, Bobola N, Sagerström CG. TALE factors use two distinct functional modes to control an essential zebrafish gene expression program. eLife. eLife Sciences Publications Limited; 2018;7:28.
Hatta K. Role of the floor plate in axonal patterning in the zebrafish CNS. Neuron. 1992;9:629–42.
Article
CAS
Google Scholar
Kok FO, Oster E, Mentzer L, Hsieh J-C, Henry CA, Sirotkin HI. The role of the SPT6 chromatin remodeling factor in zebrafish embryogenesis. Dev Biol. 2007;307:214–26.
Article
CAS
Google Scholar
Ericson J, Thor S, Edlund T, Jessell TM, Yamada T. Early stages of motor neuron differentiation revealed by expression of homeobox gene Islet-1. Science. 1992;256:1555–60.
Article
CAS
Google Scholar
Tanabe Y, William C, Jessell TM. Specification of motor neuron identity by the MNR2 homeodomain protein. Cell. 1998;95:67–80.
Article
CAS
Google Scholar
Zannino DA, Sagerström CG, Appel B. olig2-Expressing hindbrain cells are required for migrating facial motor neurons. Dev. Dyn. Wiley-Liss, Inc; 2012;241:315–26.
McKeown KA, Moreno R, Hall VL, Ribera AB, Downes GB. Disruption of Eaat2b, a glutamate transporter, results in abnormal motor behaviors in developing zebrafish. Dev Biol. 2012;362:162–71.
Article
CAS
Google Scholar
Higashijima S-I, Higashijima SI, Masino MA, Mandel G, Fetcho JR. Engrailed-1 expression marks a primitive class of inhibitory spinal interneuron. J Neurosci. 2004;24:5827–39 Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5342-03.2004.
Article
CAS
Google Scholar
Alvarez FJ, Jonas PC, Sapir T, Hartley R, Berrocal MC, Geiman EJ, et al. Postnatal phenotype and localization of spinal cord V1 derived interneurons. J. Comp. Neurol. Wiley subscription services, Inc., A Wiley Company; 2005;493:177–92.
Gosgnach S, Lanuza GM, Butt SJB, Saueressig H, Zhang Y, Velasquez T, et al. V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature. 2006;440:215–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16525473.
Article
CAS
Google Scholar
Lawson ND, Wolfe SA. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell. 2011;21:48–64.
Article
CAS
Google Scholar
Stainier DYR, Kontarakis Z, Rossi A. Making sense of anti-sense data. Dev Cell. 2015;32:7–8.
Article
CAS
Google Scholar
Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet Nature Research. 2015;16:299–311.
Article
CAS
Google Scholar
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. American Association for the Advancement of Science; 2014;346:1258096–6.
Goulding M. Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci. 2009;10:507–18 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2847453.
Article
CAS
Google Scholar
Eaton RC, Lee RK, Foreman MB. The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog Neurobiol. 2001;63:467–85.
Article
CAS
Google Scholar
Jain RA, Bell H, Lim A, Chien C-B, Granato M. Mirror movement-like defects in startle behavior of zebrafish dcc mutants are caused by aberrant midline guidance of identified descending hindbrain neurons. J Neurosci. 2014;34:2898–909.
Article
CAS
Google Scholar
Liu KS, Fetcho JR. Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron. 1999;23:325–35.
Article
CAS
Google Scholar
Yang C-M, Shinkai Y. Prdm12 is induced by retinoic acid and exhibits anti-proliferative properties through the cell cycle modulation of P19 embryonic carcinoma cells. Cell Struct. Funct. 2013;38:197–206 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23856557.
Article
Google Scholar
Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000;406:593–9.
Article
CAS
Google Scholar
Eom GH, Kim K, Kim S-M, Kee HJ, Kim J-Y, Jin HM, et al. Histone methyltransferase PRDM8 regulates mouse testis steroidogenesis. Biochemical and Biophysical Research Communications [Internet] 2009;388:131–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X09015058
Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature. Nature Publishing Group. 2005;438:374–8.
CAS
Google Scholar
Derunes C, Briknarová K, Geng L, Li S, Gessner CR, Hewitt K, et al. Characterization of the PR domain of RIZ1 histone methyltransferase. Biochemical and biophysical research communications [internet]. 2005;333:925–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15964548.
Wu Y, Ferguson JE, Wang H, Kelley R, Ren R, McDonough H, et al. PRDM6 is enriched in vascular precursors during development and inhibits endothelial cell proliferation, survival, and differentiation. J Mol Cell Cardiol. 2008;44:47–58 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2683064.
Article
CAS
Google Scholar
Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter FM, et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell. 2012;150:948–60.
Article
CAS
Google Scholar
Koh-Stenta X, Joy J, Poulsen A, Li R, Tan Y, Shim Y, et al. Characterization of the histone methyltransferase PRDM9 using biochemical, biophysical and chemical biology techniques. Biochem J. 2014;461:323–34 Available from: http://biochemj.org/lookup/doi/10.1042/BJ20140374.
Article
CAS
Google Scholar
Yu J, Angelin-Duclos C, Greenwood J, Liao J, Calame K. Transcriptional repression by Blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Mol Cell Biol. 2000;20:2592–603.
Article
CAS
Google Scholar
Chittka A, Arevalo JC, Rodriguez-Guzman M, Pérez P, Chao MV, Sendtner M. The p75NTR-interacting protein SC1 inhibits cell cycle progression by transcriptional repression of cyclin E. J Cell Biol Rockefeller University Press; 2004;164:985–96.
Davis CA, Davis CA, Haberland M, Haberland M, Arnold MA, Arnold MA, et al. PRISM/PRDM6, a transcriptional repressor that promotes the proliferative gene program in smooth muscle cells. Mol Cell Biol. 2006;26:2626–36 Available from: http://mcb.asm.org/cgi/doi/10.1128/MCB.26.7.2626-2636.2006.
Article
CAS
Google Scholar
Skaggs K, Martin DM, Novitch BG. Regulation of spinal interneuron development by the Olig-related protein Bhlhb5 and notch signaling. Development. 2011;138:3199–211.
Article
CAS
Google Scholar
Ren B, Chee KJ, Kim TH, Maniatis T. PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes dev. Cold Spring Harbor Laboratory Press; 1999;13:125–37.
Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 2008;22:1397–409.
Article
CAS
Google Scholar
Nishikata I, Nakahata S, Saito Y, Kaneda K, Ichihara E, Yamakawa N, et al. Sumoylation of MEL1S at lysine 568 and its interaction with CtBP facilitates its repressor activity and the blockade of G-CSF-induced myeloid differentiation. Oncogene Nature Publishing Group; 2011;30:4194–207.
Palmer S, Brouillet JP, Kilbey A, Fulton R, Walker M, Crossley M, et al. Evi-1 transforming and repressor activities are mediated by CtBP co-repressor proteins. J Biol Chem. 2001;276:25834–40.
Article
CAS
Google Scholar
Győry I, Wu J, Fejér G, Seto E, Wright KL. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nature Immunology Nature Publishing Group; 2004;5:299–308.
Duan Z, Person RE, Lee H-H, Huang S, Donadieu J, Badolato R, et al. Epigenetic regulation of protein-coding and microRNA genes by the Gfi1-interacting tumor suppressor PRDM5. Mol Cell Biol. 2007;27:6889–902.
Article
CAS
Google Scholar
Sander M, Paydar S, Ericson J, Briscoe J, Berber E, German M, et al. Ventral neural patterning by Nkx homeobox genes: Nkx6.1 controls somatic motor neuron and ventral interneuron fates. Genes dev. Cold Spring Harbor Laboratory Press; 2000;14:2134–9.
Hutchinson SA, Cheesman SE, Hale LA, Boone JQ, Eisen JS. Nkx6 proteins specify one zebrafish primary motoneuron subtype by regulating late islet1 expression. Development. The Company of Biologists Ltd; 2007;134:1671–7.
Cheesman SE, Layden MJ, Ohlen Von T, Doe CQ, Eisen JS. Zebrafish and fly Nkx6 proteins have similar CNS expression patterns and regulate motoneuron formation. Development The Company of Biologists Ltd; 2004;131:5221–32.
Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, Meiler SE, et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development. 1996;123:285–92.
CAS
PubMed
Google Scholar
Weicksel SE, Gupta A, Zannino DA, Wolfe SA, Sagerström CG. Targeted germ line disruptions reveal general and species-specific roles for paralog group 1 hox genes in zebrafish. BMC Dev. Biol. 2014;14:25.
Article
Google Scholar
Bertrand N, Castro DS, Guillemot F. Proneural genes and the specification of neural cell types. Nat Rev Neurosci Nature Publishing Group; 2002;3:517–30.
Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature Nature Publishing Group; 2015;524:230–3.