Elevated Wnt signals from within the neural tube result in increased numbers of Pax3 positive cells within the ophthalmic branch of the trigeminal placode
We have previously demonstrated the necessity for a sustained interaction between isthmic Wnt and FGF signaling to maintain Fgf8 expression within rhombomere 1 [14]. Here we describe how these signaling molecules, while regulating neural patterning, also direct overlapping and discrete aspects of trigeminal placode development and subsequent neuronal differentiation. Pax3 is the earliest detectable marker of the ophthalmic placode. We undertook a time course analysis in the early chick embryo to address precisely when the earliest Pax3 positive cells can be detected within the cranial ectoderm (Figure 1A–D). This expression analysis was critical to determine at what stages gain and loss of function experiments should be carried out in ovo, and for explant analysis (discussed below). The emerging ophthalmic placode can be visualized from HH8+ (6 somites) onward in the chick embryo by the expression of Pax3 (Figure 1B and arrow in 1B') and is robustly detectable by the 8 somite stage (Figure 1C and arrow in 1C') [5]. The appearance of Pax3 protein is detected in the cranial ectoderm adjacent to the midbrain-hindbrain boundary at the seven somite stage [7].
To determine if the earliest Pax3 positive placodal cells respond to emerging isthmic signals, Wnt1 was overexpressed in the neuroepithelium of 6, 8 and 10 somite embryos and incubated for 6 or 16 hours. Overexpression of Wnt1 in the neural tube at the 6 somite stage, when Pax3 expression begins to be detected in the adjacent ectoderm, resulted in increased Pax3 expression corresponding to the early ophthalmic placode (Figure 1E; n = 8/8). Similar results were observed when Wnt1 was overexpressed at the 8 or 10 somite stage, when Pax3 positive cells are specified to a placodal fate. When these embryos were incubated for 6 hours, until they reached 12 and 14 somites, respectively, the Pax3 expressing domain within the ophthalmic placode was larger (n = 7/8, 8 somites; n = 10/10, 10 somites; Figure 1F, G, respectively). Notably, the isthmic Fgf8 domain had not yet responded to activated Wnt signaling by this time point; we could only detect ectopic expression of Fgf8 9 hours post-electroporation of Wnt1 (CAC and CMJ, unpublished results). These results suggest that the earliest expansion of the trigeminal placode may be responding to Wnt signals alone, although we do not rule out the role of related FGF and Wnt family members also expressed within the midbrain-hindbrain region. Overexpression of Wnt1 at HH10, a time when the Pax3 domain is committed to placodal fate, expands the population of Pax3 positive precursor cells within the ophthalmic branch, when analyzed at HH15 (Figure 1H, J). These results demonstrate that overexpression of Wnt1 within the midbrain over a significant period of time – from the time the earliest Pax3 positive cells emerge until they are committed to form the placode-results in an increased domain of Pax3 expression in the cranial ectoderm. Therefore, Wnt signals are involved in the early development of the trigeminal placodes and appear to act simply by expanding the number of cells expressing the earliest known marker, Pax3. Wnt signals are also involved in neural crest migration. However, overexpression of Wnt1 at HH7 (Additional file 1) and concomitant DiI labeling of the neural folds resulted in an expanded Pax3 expression domain that is not overlapping with labeled migrating crest.
Attenuating midbrain Wnt signals results in a reduction of the number of Pax3 positive cells in the emerging ophthalmic placode
Previous results have reported that blocking the canonical Wnt pathway within the cranial ectoderm results in cells failing to maintain trigeminal placode fate [8]. We have confirmed these results and observe that both Pax3 and, consequently, Islet1 expression are diminished when a dominant negative form of β-catenin is expressed directly in the cranial ectoderm (data not shown). Furthermore, these authors concluded from gain of function studies that although Wnt signaling within the ophthalmic placode was necessary, it was not sufficient for ophthalmic placode induction. Overexpression of constitutively active β-catenin did not result in ectopic expression of Pax3 positive cells. However, gain of function studies outlined above demonstrated that elevated Wnt1 signals within the midbrain-hindbrain region induced development of the ophthalmic placode and expanded the expression of the earliest marker, Pax3. To address whether Wnt signals emanating from the neural tube were required for the correct development of the ophthalmic placode, we electroporated a dominant negative form of Wnt1 from the time we could first detect Pax3 expression. CAGGS GFP was co-electroporated directly into the neural tube and DNA for both constructs was targeted to the right hand side. Attenuation of Wnt signals at HH8 resulted in fewer Pax3 positive cells within the early placode when analyzed at HH13 (Figure 2C, E; n = 15/18). Coronal sections revealed a reduction in the number of Pax3 positive cells as they begin to delaminate into the mesenchyme (Figure 2I). However, when dominant negative Wnt1 was introduced into the neural tube after HH10, no change in placodal Pax3 expression was observed (Figure 2F–H, J; n = 15/16). Notably, a reduction of isthmic Fgf8 expression [14] and a loss of Pax3 transcripts within the neural tube was observed (data not shown), indicating that both dominant negative constructs were functional. Taken together, these results suggest a temporal requirement for neural tube derived Wnt signals to maintain the early development of the Pax3 positive placodal population. This activity appears to be no longer required beyond HH10-12.
To further address the requirement of Wnt signals post-HH10-12, explants were excised at different developmental time points and cultured in the presence of the Wnt antagonist secreted frizzled-related protein (SFRP)2. Neuroectoderm plus cranial ectoderm was excised at the 8 somite stage and incubated alone (Figure 3A) or in the presence of 0.5 μg/ml of SFRP2 overnight. In the presence of the Wnt antagonist, Pax3 expression was lost completely (Figure 3B), compared to control explants (Figure 3A). When ectodermal explants were excised at HH13, the presence of SFRP2 no longer inhibited Pax3 expression (Figure 3D). Expression was comparable to that detected when explants were cultured alone (Figure 3C). The same result was observed when ectodermal explants were cultured with adjacent midbrain tissue intact (data not shown). The results from in ovo and in vivo assays suggest that while Wnt signals are necessary for the onset of Pax3 expression, they are dispensable after HH13. We also examined how antagonizing Wnt signals affects the expression of the midbrain Wnt1. Midbrain to rhombomere 2 explants grown in the presence of SFRP2 lost Wnt1 expression (Figure 3F) compared to controls (Figure 3E). This demonstrates that Wnt signaling serves to regulate the expression of Wnt1 ligands within the neuroepithelium.
Wnt activity is dependent on FGF signaling to initiate Pax3 expression within the cranial ectoderm, and for subsequent neuronal differentiation
In an attempt to uncouple the activities of isthmic organizer molecules (that is, Wnt1 and FGF8), which is not possible in our electroporation strategies due to their reciprocal feed forward interactions [14], we undertook explant assays to address the roles of these signaling molecules independently. Our in vivo analyses, through overexpression of Wnt1 in the neuroectoderm at the onset of Pax3 placodal expression, and loss of function studies through perturbation of Wnt signals, suggested that Wnt activity may act alone to induce Pax3 expression in the ophthalmic placode. To test this directly, we isolated cranial ectoderm explants from the presumptive midbrain to anterior hindbrain level at the 3 somite stage, before the onset of Pax3 expression, and asked whether Wnt or FGF induced Pax3 expression. These explants are also isolated before neural crest has migrated. The presence of recombinant Wnt3A protein (a related Wnt1 family member known to activate the canonical Wnt pathway; Figure 4B; n = 8/8) but not FGF8b (Figure 4C; n = 11/11) was sufficient to induce Pax3 expression. In control explant cultures, tissue isolated from 3 somite stage embryos did not express Pax3 after overnight culture (Figure 4A; n = 19/19). However, given that Wnt and FGF signals act reciprocally in a signaling loop within the neuroepithelium, we addressed whether Wnt activation of Pax3 expression was dependent on FGF signaling. In the presence of SU5402 (an FGF receptor antagonist) Wnt3A no longer initiated Pax3 expression in ectoderm explants (Figure 4D; n = 8/8). Positive controls for the activity of Wnt3A and FGF8b are shown in Additional file 2. In both cases, isthmic expression of Fgf8 was expanded, as previously reported [14]. Given that Wnt activity appeared dependent on FGF receptor activation to initiate Pax3 expression, we investigated whether the same holds true for the expression of the neuronal marker Brn3a. Similarly, Wnt activity was dependent on FGF signaling to initiate Brn3a expression (Figure 4F, G). These results demonstrate that Wnt and FGF signals act together to initiate Pax3 expression and, as a consequence, the expression of neuronal markers such as Brn3a. Perhaps isthmic organizer activity can not be uncoupled to direct an expansion of placodal Pax3 expression in vitro. This may account for the insufficiency of constitutively active β-catenin, when overexpressed in the cranial ectoderm, to expand Pax3 expression, as reported by Lassiter et al. [8]. An alternative explanation is that Wnt activity may act independently of β-catenin and could directly interact with components of the FGF pathway.
Overexpression of Wnt1 and ectopic activation of isthmic Fgf8 expression results in a hyperdifferentiated trigeminal ganglion
To address later effects of Wnt signals on trigeminal differentiation, Wnt1 was targeted by electroporation to the right side of the neural tube at HH10, and embryos were cultured overnight until they reached HH16. Overexpression of Wnt1 resulted in a caudal expansion of isthmic Fgf8 expression (Figure 5A, B, D, F; n = 18/20) as expected [14]. Coincident with expanded Fgf8 expression, which was almost double in size (Figure 5F compared to Figure 5E), the ophthalmic trigeminal lobe appeared more differentiated (Figure 5D, H). These results indicate that elevated levels of Wnt1 and ectopic expression of Fgf8 from within the neural tube affects differentiation of the trigeminal ganglion. These results point to a growth effect on the trigeminal ganglion as we never observed aberrant targeting or ectopic branching. In an attempt to ablate some neural tube derived signals, the isthmic organizer region and posterior midbrain was dissected away and a foil barrier was inserted to prevent isthmic regeneration. The trigeminal ganglion was visualized using a neurofilament antibody, and on the side where the isthmus was ablated, the ganglion appeared smaller (Figure 5J; n = 6/6) compared to the un-operated side (Figure 5I). These results demonstrate that isthmic derived signals are involved in the maintenance of trigeminal differentiation.
Elevated Fgf8 signals result in premature differentiation of both the ophthalmic and maxillomandibular branches of the trigeminal placode
To determine whether the activation of isthmic FGF signals can also regulate differentiation of the trigeminal placodes, we electroporated CAGGS FGF8 on the right side of the neural tube at HH10 and examined the expression of a neuronal marker, Islet1. When embryos were incubated for 16 hours, until HH16, 100% of the embryos displayed a robust expansion of isthmic Fgf8 and Wnt1 expression (Additional file 2F, G, J, K; n = 8/8). Overexpression of Fgf8 at the isthmus also resulted in more Islet1 expression within the trigeminal placodes (Figure 6A, D; n = 12/12). Similar to Islet1 expression, after overexpression of either Wnt1 or Fgf8 at the isthmus, Brn3a expression was more robustly detectable within both lobes of the trigeminal (data not shown). Coronal sections reveal more Islet1 positive cells on the injected side (Additional file 3A) and in the case of Brn3a, more positive cells can be detected within the ectoderm and delaminating through the mesenchyme (Additional file 3B). The expression of Islet1 was also examined using confocal microscopy (Figure 6K, L). The trigeminal lobes on the targeted side appeared more branched and extended (Figure 6L; n = 3/3) compared to controls (Figure 6K), suggesting premature differentiation. Similar to Pax3 expression, overexpression of Wnt1 at the midbrain-hindbrain boundary at HH10 resulted in more Islet1 expression within the ophthalmic and maxillomandibular branches (Figure 6E, G; n = 18/18). These results confirm that both trigeminal placodes differentiate prematurely after overexpression of Fgf8, similar to Wnt1. To address if Wnt and FGF signals act synergistically to direct trigeminal development, both constructs were electroporated together into the neural tube at HH10, and Islet1 expression was assayed (Figure 6I, J). The expression of both constructs did not further enhance trigeminal placode differentiation over that observed after misexpression of either construct alone (Figure 6J, G compared to Figure 6D). It appears that a threshold of isthmic signals is sufficient to direct trigeminal placode differentiation. In no experimental regime are gross ectopic neurons generated outside the normal placode domains. Similar to the results obtained using neurofilament staining (Figure 5), the precocious expression of neurogenic markers specific to the trigeminal placodes suggests that neuronal differentiation may be occurring prematurely.
To further address the question of synergy between Wnt and FGF signals, their activities were tested in cranial ectoderm explant assays. Ectoderm was isolated at HH10 and cultured either alone, or in the presence of FGF8, Wnt3A, or both recombinant proteins for 16 hours. In each condition, a pair of ectoderm explants was isolated from the same embryo. When HH10 ectoderm isolates were cultured in the presence of FGF8 (Figure 7B; n = 8/8) or Wnt3A (Figure 7D; n = 8/8) a larger domain of Islet1 expression was detected compared to untreated control explants isolated from the same embryo (Figure 7A, C). Similar to the results obtained in ovo, the presence of both Wnt3A and FGF8 in culture did not augment the expression of Islet1 (Figure 7F) compared to that observed for either protein alone (Figure 7B, D, F). Therefore, these molecules do not appear to act synergistically, suggesting that a threshold dose of either signaling molecule is sufficient to direct trigeminal placode differentiation.
FGF signaling via the MAPK pathway directs differentiation of the trigeminal placodes
Electroporation of either Wnt1 or FGF8 at the level of the isthmus expands Fgf8 expression (Figure 5 and Additional file 2). Similarly, increasing either Wnt1 or FGF8 levels leads to premature differentiation of the trigeminal placodes (Figures 5 and 6). Wnt signals are, however, dependent on the FGF pathway to initiate the onset of Pax3 expression, and subsequent neuronal markers (Figure 4). In ovo loss of function analyses suggest that isthmic Wnt signals may not be required after HH10 when the placodal Pax3 expression domain is specified (Figure 2). We therefore sought to investigate whether FGF signals themselves may function independently during early neural differentiation of the placodes. When HH10 explants were isolated and cultured alone for 16 hours, they expressed Islet1 (Figure 8A; n = 10/10). The presence of SU5402 (50 μM), an FGF receptor antagonist, resulted in a loss of Islet1 expression (Figure 8B; n = 10/10). In explants where the FGF pathway was blocked, the addition of Wnt3A was no longer sufficient to maintain Islet1 expression (Figure 8C; n = 8/8). These results suggest that the FGF pathway is required to maintain early neuronal differentiation of the trigeminal placodes.
Three well characterized pathways are activated downstream of the FGF receptors, namely the MAPK pathway, the phosphoinositide 3-kinase-AKT and phospholipase Cγ pathways. To test whether MAPK signaling is required for the onset of neuronal differentiation within placodal ectoderm, HH10 explants were treated with a MEK antagonist (PD184352, 5μM) and cultured until they reached approximately HH16. As a control for the activity of the MEK antagonist, HH10 midbrain to rhombomere 2 explants that normally express Fgf8 (Figure 8D; n = 4/4) lost this expression when cultured overnight in the presence of PD184352 (Figure 8E). These results are identical to our previous findings using SU5402 [14]. PD184352 was then used to assess whether neuronal differentiation of the trigeminal placodes was dependent on MAPK activity. The presence of PD184352 resulted in a loss of Islet1 expression (Figure 8G; n = 12/14) compared to HH10 ectoderm controls (Figure 8F). These results demonstrate that FGF signaling, via the MAPK pathway, is necessary to direct an early differentiation event within the trigeminal placodes. Western blot analysis of midbrain to rhombomere 2 and cranial ectoderm explants at HH10 also detected dpErk, which was downregulated in the presence of either SU5402 (Figure 8H) or PD184352 (a selective MEK antagonist; data not shown). Similar stage explants were also positive for the accumulation of nuclear β-catenin. Cryosections of HH15 embryos were also positive for dpERK immunofluorescence within the cranial ectoderm (Figure 8I).