Tanaka E, Ferretti P. Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci. 2009;10(10):713–23.
Article
CAS
PubMed
Google Scholar
Kolb B, Gibb R. Brain plasticity and behaviour in the developing brain. J Can Acad Child Adolesc Psychiatry. 2011;20(4):265.
PubMed
PubMed Central
Google Scholar
y Cajal SR. Degeneration & regeneration of the nervous system. Birmingham: Classics of Medicine Library; 1984.
Google Scholar
Whishaw IQ, Gorny B, Sarna J. Paw and limb use in skilled and spontaneous reaching after pyramidal tract, red nucleus and combined lesions in the rat: behavioral and anatomical dissociations. Behav Brain Res. 1998;93(1–2):167–83.
Article
CAS
PubMed
Google Scholar
Grigorean VT, Sandu AM, Popescu M, Iacobini MA, Stoian R, Neascu C, Popa F. Cardiac dysfunctions following spinal cord injury. J Med Life. 2009;2(2):133.
PubMed
PubMed Central
Google Scholar
Donovan WH. Spinal cord injury—past, present, and future. J Spinal Cord Med. 2007;30(2):85.
Article
PubMed
PubMed Central
Google Scholar
Dietz V, Colombo G. Recovery from spinal cord injury—underlying mechanisms and efficacy of rehabilitation. In: Mechanisms of secondary brain damage from trauma and ischemia. Vienna: Springer; 2004. p. 95–100.
Chapter
Google Scholar
Dietz V, Colombo G, Jensen L, Baumgartner L. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol. 1995;37(5):574–82.
Article
CAS
PubMed
Google Scholar
David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science. 1981;214(4523):931–3.
Article
CAS
PubMed
Google Scholar
Gordon-Weeks PR. Microtubules and growth cone function. J Neurobiol. 2004;58(1):70–83.
Article
CAS
PubMed
Google Scholar
Cheah M, Andrews MR, Chew DJ, Moloney EB, Verhaagen J, Fässler R, Fawcett JW. Expression of an activated integrin promotes long-distance sensory axon regeneration in the spinal cord. J Neurosci. 2016;36(27):7283–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532(7598):195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwok JC, Warren P, Fawcett JW. Chondroitin sulfate: a key molecule in the brain matrix. Int J Biochem Cell Biol. 2012;44(4):582–6.
Article
CAS
PubMed
Google Scholar
Schwab ME, Thoenen H. Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J Neurosci. 1985;5(9):2415–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caroni P, Schwab ME. Antibody against myelin associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron. 1988;1(1):85–96.
Article
CAS
PubMed
Google Scholar
Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature. 2000;403(6768):434.
Article
CAS
PubMed
Google Scholar
Kempf A, Tews B, Arzt ME, Weinmann O, Obermair FJ, Pernet V, Zagrebelsky M, Delekate A, Iobbi C, Zemmar A, Ristic Z. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. PLoS Biol. 2014;12(1):e1001763.
Article
PubMed
PubMed Central
Google Scholar
Schwab ME. Nogo and axon regeneration. Curr Opin Neurobiol. 2004;14(1):118–24.
Article
CAS
PubMed
Google Scholar
Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker SJ, Askew KL, Wood A, Geoffroy CG, Zheng B, Liepmann CD, Katagiri Y. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci. 2012;15(5):703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwab ME. Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci. 2010;11(12):799.
Article
CAS
PubMed
Google Scholar
Akbik FV, Bhagat SM, Patel PR, Cafferty WB, Strittmatter SM. Anatomical plasticity of adult brain is titrated by Nogo receptor 1. Neuron. 2013;77(5):859–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akbik F, Cafferty WB, Strittmatter SM. Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp Neurol. 2012;235(1):43–52.
Article
CAS
PubMed
Google Scholar
Schnell L, Schwab ME. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature. 1990;343(6255):269.
Article
CAS
PubMed
Google Scholar
Bregman BS, Kunkel-Bagden E, Schnell L, Dai HN, Gao D, Schwab ME. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature. 1995;378(6556):498.
Article
CAS
PubMed
Google Scholar
Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, Rouiller EM. Anti-Nogo-A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates–re-examination and extension of behavioral data. Eur J Neurosci. 2009;29(5):983–96.
Article
PubMed
PubMed Central
Google Scholar
Gonzenbach RR, Gasser P, Zörner B, Hochreutener E, Dietz V, Schwab ME. Nogo-A antibodies and training reduce muscle spasms in spinal cord-injured rats. Ann Neurol. 2010;68(1):48–57.
Article
PubMed
Google Scholar
Bonal CB, Baronnier DE, Pot C, Benkhoucha M, Schwab ME, Lalive PH, Herrera PL. Nogo-A downregulation improves insulin secretion in mice. Diabetes. 2013;62(5):1443–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liebscher T, Schnell L, Schnell D, Scholl J, Schneider R, Gullo M, Fouad K, Mir A, Rausch M, Kindler D, Hamers FP. Nogo-A antibody improves regeneration and locomotion of spinal cord–injured rats. Ann Neurol. 2005;58(5):706–19.
Article
CAS
PubMed
Google Scholar
Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci. 2004;7(3):269.
Article
CAS
PubMed
Google Scholar
Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR, Sofroniew MV. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med. 2008;14(1):69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Z’Graggen WJ, Metz GA, Kartje GL, Thallmair M, Schwab ME. Functional recovery and enhanced corticofugal plasticity after unilateral pyramidal tract lesion and blockade of myelin-associated neurite growth inhibitors in adult rats. J Neurosci. 1998;18(12):4744–57.
Article
PubMed
PubMed Central
Google Scholar
Raineteau O, Fouad K, Noth P, Thallmair M, Schwab ME. Functional switch between motor tracts in the presence of the mAb IN-1 in the adult rat. Proc Natl Acad Sci. 2001;98(12):6929–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wyss AF, Hamadjida A, Savidan J, Liu Y, Bashir S, Mir A, Schwab ME, Rouiller EM, Belhaj-Saif A. Long-term motor cortical map changes following unilateral lesion of the hand representation in the motor cortex in macaque monkeys showing functional recovery of hand functions. Restor Neurol Neurosci. 2013;31(6):733–60.
PubMed
Google Scholar
Bareyre F, Haudenschild B, Schwab M. Long-lasting sprouting and gene expression changes induced by the monoclonal antibody IN-1 in the adult spinal cord. J Neurosci. 2002;22(16):7097–110. https://doi.org/10.1523/jneurosci.22-16-07097.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
He W, Lu Y, Qahwash I, Hu X, Chang A, Yan R. Reticulon family members modulate BACE1 activity and amyloid-β peptide generation. Nat Med. 2004;10(9):959–65. https://doi.org/10.1038/nm1088.
Article
CAS
PubMed
Google Scholar
Tagami S, Eguchi Y, Kinoshita M, Takeda M, Tsujimoto Y. A novel protein, RTN-xS, interacts with both Bcl-xL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity. Oncogene. 2000;19(50):5736–46. https://doi.org/10.1038/sj.onc.1203948.
Article
CAS
PubMed
Google Scholar
Ondarza A. Direct evidence of primary afferent sprouting in distant segments following spinal cord injury in the rat: colocalization of GAP-43 and CGRP. Exp Neurol. 2003. https://doi.org/10.1016/s0014-4886(03)00364-9.
García-Alías G, Barkhuysen S, Buckle M, Fawcett JW. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci. 2009;12(9):1145.
Article
CAS
PubMed
Google Scholar
Gonzenbach RR, Zoerner B, Schnell L, Weinmann O, Mir AK, Schwab ME. Delayed anti-nogo-a antibody application after spinal cord injury shows progressive loss of responsiveness. J Neurotrauma. 2012;29(3):567–78.
Article
PubMed
Google Scholar
Wang X, Duffy P, McGee AW, Hasan O, Gould G, Tu N, Harel NY, Huang Y, Carson RE, Weinzimmer D, Ropchan J. Recovery from chronic spinal cord contusion after Nogo receptor intervention. Ann Neurol. 2011;70(5):805–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai SY, Papadopoulos CM, Schwab ME, Kartje GL. Delayed anti-nogo-a therapy improves function after chronic stroke in adult rats. Stroke. 2011;42(1):186–90.
Article
CAS
PubMed
Google Scholar
Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schröter A, Gullo M, Weinmann O, Kobayashi K, Helmchen F, Ommer B. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science. 2014;344(6189):1250–5.
Article
CAS
PubMed
Google Scholar
Chen K, Marsh BC, Cowan M, Al'Joboori YD, Gigout S, Smith CC, Messenger N, Gamper N, Schwab ME, Ichiyama RM. Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats. Exp Neurol. 2017;292:135–44.
Article
CAS
PubMed
Google Scholar
Steward O, Popovich PG, Dietrich DW, Kleitman N. Replication and reproducibility in spinal cord injury research. Exp Neurol. 2012;233(2):597–605.
Article
PubMed
Google Scholar
Zheng B, Ho C, Li S, Keirstead H, Steward O, Tessier-Lavigne M. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron. 2003;38(2):213–24. https://doi.org/10.1016/s0896-6273(03)00225-3.
Article
CAS
PubMed
Google Scholar
Kim J, Li S, GrandPré T, Qiu D, Strittmatter S. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron. 2003;38(2):187–99. https://doi.org/10.1016/s0896-6273(03)00147-8.
Article
CAS
PubMed
Google Scholar
Simonen M, Pedersen V, Weinmann O, et al. Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron. 2003;38(2):201–11. https://doi.org/10.1016/s0896-6273(03)00226-5.
Article
CAS
PubMed
Google Scholar
Kim J, Liu B, Park J, Strittmatter S. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron. 2004;44(3):439–51. https://doi.org/10.1016/j.neuron.2004.10.015.
Article
CAS
PubMed
Google Scholar
Zheng B, Atwal J, Ho C, et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci. 2005;102(4):1205–10. https://doi.org/10.1073/pnas.0409026102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris R, Whishaw IQ. A proposal for a rat model of spinal cord injury featuring the rubrospinal tract and its contributions to locomotion and skilled hand movement. Front Neurosci. 2016;10:5.
PubMed
PubMed Central
Google Scholar
Metz GA, Curt A, Van De Meent H, Klusman I, Schwab ME, Dietz V. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma. 2000;17(1):1–7.
Article
CAS
PubMed
Google Scholar
Sato Y, Iketani M, Kurihara Y, Yamaguchi M, Yamashita N, Nakamura F, Arie Y, Kawasaki T, Hirata T, Abe T, Kiyonari H. Cartilage acidic protein–1B (LOTUS), an endogenous Nogo receptor antagonist for axon tract formation. Science. 2011;333(6043):769–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mezler M, Moeller A, Mueller BK, Meyer AH, Schmidt MK, Ghayur T, Barlow E, Labkovsky B, Devanarayan V, Norreel JC, Mueller R. Blocking Nogo receptor 1 promotes functional regeneration after spinal cord injury. J Neurol Disord. 2013;1:128. https://doi.org/10.4172/2329-6895.1000128.
GrandPré T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature. 2002;417(6888):547.
Article
CAS
PubMed
Google Scholar
Zhao RR, Andrews MR, Wang D, Warren P, Gullo M, Schnell L, Schwab ME, Fawcett JW. Combination treatment with anti-Nogo-A and chondroitinase ABC is more effective than single treatments at enhancing functional recovery after spinal cord injury. Eur J Neurosci. 2013;38(6):2946–61.
PubMed
Google Scholar
Karlén A, Karlsson TE, Mattsson A, Lundströmer K, Codeluppi S, Pham TM, Bäckman CM, Ögren SO, Åberg E, Hoffman AF, Sherling MA. Nogo receptor 1 regulates formation of lasting memories. In: Proceedings of the National Academy of Sciences; 2009. p. pnas-0905390106.
Google Scholar
Raiker SJ, Lee H, Baldwin KT, Duan Y, Shrager P, Giger RJ. Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. J Neurosci. 2010;30(37):12432–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo X, Salgueiro Y, Beckerman SR, Lemmon VP, Tsoulfas P, Park KK. Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury. Exp Neurol. 2013;247:653–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pun RY, Rolle IJ, LaSarge CL, Hosford BE, Rosen JM, Uhl JD, Schmeltzer SN, Faulkner C, Bronson SL, Murphy BL, Richards DA. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron. 2012;75(6):1022–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willi R, Schwab ME. Nogo and Nogo receptor: relevance to schizophrenia? Neurobiol Dis. 2013;54:150–7.
Article
CAS
PubMed
Google Scholar
Quraishe S, Forbes L, Andrews M. The extracellular environment of the CNS: influence on plasticity, sprouting, and axonal regeneration after spinal cord injury. Neural Plast. 2018;2018:1–18. https://doi.org/10.1155/2018/2952386.
Article
CAS
Google Scholar
McKerracher L, David S, Jackson D, Kottis V, Dunn R, Braun P. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron. 1994;13(4):805–11. https://doi.org/10.1016/0896-6273(94)90247-x.
Article
CAS
PubMed
Google Scholar
Kottis V, Thibault P, Mikol D, et al. Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J Neurochem. 2002;82(6):1566–9. https://doi.org/10.1046/j.1471-4159.2002.01146.x.
Article
CAS
PubMed
Google Scholar
Karova K, Wainwright J, Machova-Urdzikova L, et al. Transplantation of neural precursors generated from spinal progenitor cells reduces inflammation in spinal cord injury via NF-κB pathway inhibition. J Neuroinflammation. 2019;16(1). https://doi.org/10.1186/s12974-019-1394-7.
Antibodies against Nogo-A to enhance plasticity, regeneration and functional recovery after acute spinal cord injury, a multicenter European clinical proof of concept trial. 2016. Available from: https://cordis.europa.eu/project/rcn/198795_en.html. Accessed 12 Oct 2018.