Matsui JI, Ryals BM. Hair cell regeneration: an exciting phenomenon...But will restoring hearing and balance be possible?[J]. J Rehabil Res Dev. 2005;42(4 Suppl 2):187–98.
Article
Google Scholar
Ruben RJ. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses[J]. Acta Otolaryngol. 1967:220–1.
Meyers JR, Corwin JT. Morphological Correlates of Regeneration and Repair in the Inner Ear[M]. New York: Springer; 2008. p. 39–75.
Google Scholar
Staecker H, Praetorius M, Baker K, et al. Vestibular hair cell regeneration and restoration of balance function induced by math1 gene transfer[J]. Otol Neurotol. 2007;28(2):223–31.
Article
Google Scholar
Chen L, Guo W, Ren L, et al. A de novo silencer causes elimination of MITF-M expression and profound hearing loss in pigs[J]. BMC Biol. 2016;14:52.
Article
Google Scholar
Read AP, Newton VE. Waardenburg syndrome[J]. J Med Genet. 1997;34(8):656–65.
Article
CAS
Google Scholar
Hageman MJ, Oosterveld WJ. Vestibular findings in 25 patients with Waardenburg's syndrome[J]. Arch Otolaryngol. 1977;103(11):648–52.
Article
CAS
Google Scholar
Rask-Andersen H, Erwall C, Steel KP, et al. The endolymphatic sac in a mouse mutant with cochleo-saccular degeneration : electrophysiological and ultrastructural correlations[J]. Hear Res. 1987;26(2):177–90.
Article
CAS
Google Scholar
Chen I, Limb CJ, Ryugo DK. The effect of cochlear-implant-mediated electrical stimulation on spiral ganglion cells in congenitally deaf white cats[J]. J Assoc Res Otolaryngol. 2010;11(4):587–603.
Article
Google Scholar
Anniko M, Fabiansson E, Nilsson O. Deafness in an old English sheepdog. A case report[J]. Archives of oto-rhino-laryngology. 1977;218(1–2):1–7.
CAS
PubMed
Google Scholar
Mair IW. Hereditary deafness in the dalmatian dog[J]. Arch Otorhinolaryngol. 1976;212(1):1–14.
Article
CAS
Google Scholar
Sugiura A, Hilding DA. Cochleo-saccular degeneration in Hedlund white mink[J]. Acta Otolaryngol. 1970;69(1):126–37.
Article
CAS
Google Scholar
Igarashi M, Macrae D, Ouchi T, et al. Cochleo-saccular degeneration in one of three sisters with hereditary deafness, absent gastric motility, small bowel diverticulitis and progressive sensory neuropathy[J]. ORL. 1981;43(1):4–16.
Article
CAS
Google Scholar
Marcus RE. Vestibular function and additional findings in Waardenburg's syndrome[J]. Acta Otolaryngol. 1968:221–9.
Black FO, Pesznecker SC, Allen K, et al. A vestibular phenotype for Waardenburg syndrome?[J]. Otol Neurotol. 2001;22(2):188–94.
Article
CAS
Google Scholar
Zelig S. Syndrome of Waardenburg with deafness[J]. Laryngoscope. 1961;71:19–23.
Article
CAS
Google Scholar
Stoller FM. A deafmute with two congenital syndromes[J]. Arch Otolaryngol. 1962;76:42–6.
Article
CAS
Google Scholar
Hildesheimer M, Maayan Z, Muchnik C, et al. Auditory and vestibular findings in Waardenburg’s type II syndrome[J]. J Laryngol Otol. 1989;103(12):1130–3.
Article
CAS
Google Scholar
Thorkilgaard O. Waardenburg’s syndrome in father and daughter[J]. Acta Ophthalmol. 1962;40:590–9.
Article
CAS
Google Scholar
Basta D, Todt I, Eisenschenk A, et al. Vestibular evoked myogenic potentials induced by intraoperative electrical stimulation of the human inferior vestibular nerve[J]. Hear Res. 2005;204(1–2):111–4.
Article
CAS
Google Scholar
Shi X, Zhang Y, Li Y, et al. Vestibular-evoked myogenic potentials in miniature pigs[J]. J Otology. 2016;11(2):88–93.
Article
Google Scholar
Hirvonen TP, Minor LB, Hullar TE, et al. Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla[J]. J Neurophysiol. 2005;93(2):643–55.
Article
Google Scholar
Ciuman RR. Stria vascularis and vestibular dark cells: characterisation of main structures responsible for inner-ear homeostasis, and their pathophysiological relations[J]. J Laryngol Otol. 2009;123(2):151–62.
Article
CAS
Google Scholar
Liu H, Li Y, Chen L, et al. Organ of Corti and Stria Vascularis: is there an interdependence for survival?[J]. PLoS One. 2016;11(12):e168953.
Google Scholar
Kim HJ, Gratton MA, Lee JH, et al. Precise toxigenic ablation of intermediate cells abolishes the “battery” of the cochlear duct[J]. J Neurosci. 2013;33(36):14601–6.
Article
CAS
Google Scholar
Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential[J]. J Physiol. 2006;576(Pt 1):11–21.
Article
CAS
Google Scholar
Kimura RS. Distribution, structure, and function of dark cells in the vestibular labyrinth[J]. Ann Otol Rhinol Laryngol. 1969;78(3):542–61.
Article
CAS
Google Scholar
Silverstein H, Schuknecht HF. Biochemical studies of inner ear fluid in man. Changes in otosclerosis, Meniere’s disease, and acoustic neuroma[J]. Arch Otolaryngol. 1966;84(4):395–402.
Article
CAS
Google Scholar
Sato H, Imagawa M, Isu N, et al. Properties of saccular nerve-activated vestibulospinal neurons in cats[J]. Exp Brain Res. 1997;116(3):381–8.
Article
CAS
Google Scholar
Taube JS. The head direction signal: origins and sensory-motor integration[J]. Annu Rev Neurosci. 2007;30:181–207.
Article
CAS
Google Scholar
Baek JH, Zheng Y, Darlington CL, et al. Evidence that spatial memory deficits following bilateral vestibular deafferentation in rats are probably permanent[J]. Neurobiol Learn Mem. 2010;94(3):402–13.
Article
Google Scholar
Hafting T, Fyhn M, Molden S, et al. Microstructure of a spatial map in the entorhinal cortex[J]. Nature. 2005;436(7052):801–6.
Article
CAS
Google Scholar
Jahn K, Wagner J, Deutschlander A, et al. Human hippocampal activation during stance and locomotion: fMRI study on healthy, blind, and vestibular-loss subjects[J]. Ann N Y Acad Sci. 2009;1164:229–35.
Article
Google Scholar
Matsui JI, Haque A, Huss D, et al. Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo[J]. J Neurosci. 2003;23(14):6111–22.
Article
CAS
Google Scholar
Gale JE, Meyers JR, Periasamy A, et al. Survival of bundleless hair cells and subsequent bundle replacement in the bullfrog's saccule[J]. J Neurobiol. 2002;50(2):81–92.
Article
Google Scholar