Wong RO: Retinal waves and visual system development. Annu Rev Neurosci. 1999, 22: 29-47. 10.1146/annurev.neuro.22.1.29.
Article
CAS
PubMed
Google Scholar
Torborg CL, Feller MB: Spontaneous patterned retinal activity and the refinement of retinal projections. Prog Neurobiol. 2005, 76 (4): 213-235. 10.1016/j.pneurobio.2005.09.002.
Article
PubMed
Google Scholar
Hebb DO: Organization of Behavior: A neuropsychological Theory. 1949, New York: John Wiley and sons
Google Scholar
Chalupa LM: A reassessment of the role of activity in the formation of eye-specific retinogeniculate projections. Brain Res Rev. 2007, 55 (2): 228-236. 10.1016/j.brainresrev.2007.03.003.
Article
PubMed
Google Scholar
Feller MB, Blankenship AG: The function of the retina prior to vision: The phenomenon of retinal waves and retinotopic refinement. Eye, Retina, and Visual System of the Mouse. Edited by: Chalupa LM, Williams RW. 2008, Boston: Massachusetts Institute of Technology Press, 353-362.
Google Scholar
Huberman AD, Feller MB, Chapman B: Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci. 2008, 31: 479-509. 10.1146/annurev.neuro.31.060407.125533.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cohen-Cory S: The developing synapse: construction and modulation of synaptic structures and circuits. Science. 2002, 298 (5594): 770-776. 10.1126/science.1075510.
Article
CAS
PubMed
Google Scholar
Stellwagen D, Shatz CJ: An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron. 2002, 33 (3): 357-367. 10.1016/S0896-6273(02)00577-9.
Article
CAS
PubMed
Google Scholar
Sengpiel F, Kind PC: The role of activity in development of the visual system. Curr Biol. 2002, 12 (23): R818-826. 10.1016/S0960-9822(02)01318-0.
Article
CAS
PubMed
Google Scholar
Chen C, Regehr WG: Developmental remodeling of the retinogeniculate synapse. Neuron. 2000, 28 (3): 955-966. 10.1016/S0896-6273(00)00166-5.
Article
CAS
PubMed
Google Scholar
Warland DK, Huberman AD, Chalupa LM: Dynamics of spontaneous activity in the fetal macaque retina during development of retinogeniculate pathways. J Neurosci. 2006, 26 (19): 5190-5197. 10.1523/JNEUROSCI.0328-06.2006.
Article
CAS
PubMed
Google Scholar
Huberman AD, Dehay C, Berland M, Chalupa LM, Kennedy H: Early and rapid targeting of eye-specific axonal projections to the dorsal lateral geniculate nucleus in the fetal macaque. J Neurosci. 2005, 25 (16): 4014-4023. 10.1523/JNEUROSCI.4292-04.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mehta V, Sernagor E: Early neural activity and dendritic growth in turtle retinal ganglion cells. Eur J Neurosci. 2006, 24 (3): 773-786. 10.1111/j.1460-9568.2006.04933.x.
Article
PubMed
Google Scholar
Shatz CJ, Stryker MP: Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science. 1988, 242 (4875): 87-89. 10.1126/science.3175636.
Article
CAS
PubMed
Google Scholar
Penn AA, Riquelme PA, Feller MB, Shatz CJ: Competition in retinogeniculate patterning driven by spontaneous activity. Science. 1998, 279 (5359): 2108-2112. 10.1126/science.279.5359.2108.
Article
CAS
PubMed
Google Scholar
Skaliora I, Scobey RP, Chalupa LM: Prenatal development of excitability in cat retinal ganglion cells: action potentials and sodium currents. J Neurosci. 1993, 13 (1): 313-323.
CAS
PubMed
Google Scholar
Cook PM, Prusky G, Ramoa AS: The role of spontaneous retinal activity before eye opening in the maturation of form and function in the retinogeniculate pathway of the ferret. Vis Neurosci. 1999, 16 (3): 491-501. 10.1017/S0952523899163107.
Article
CAS
PubMed
Google Scholar
Sun C, Speer CM, Wang GY, Chapman B, Chalupa LM: Epibatidine application in vitro blocks retinal waves without silencing all retinal ganglion cell action potentials in developing retina of the mouse and ferret. J Neurophysiol. 2008, 100 (6): 3253-3263. 10.1152/jn.90303.2008.
Article
PubMed Central
PubMed
Google Scholar
Huberman AD, Wang GY, Liets LC, Collins OA, Chapman B, Chalupa LM: Eye-specific retinogeniculate segregation independent of normal neuronal activity. Science. 2003, 300 (5621): 994-998. 10.1126/science.1080694.
Article
PubMed Central
CAS
PubMed
Google Scholar
Williams RW, Strom RC, Rice DS, Goldowitz D: Genetic and environmental control of variation in retinal ganglion cell number in mice. J Neurosci. 1996, 16 (22): 7193-7205.
CAS
PubMed
Google Scholar
Williams RW, Strom RC, Goldowitz D: Natural variation in neuron number in mice is linked to a major quantitative trait locus on Chr 11. J Neurosci. 1998, 18 (1): 138-146.
CAS
PubMed
Google Scholar
Seecharan DJ, Kulkarni AL, Lu L, Rosen GD, Williams RW: Genetic control of interconnected neuronal populations in the mouse primary visual system. J Neurosci. 2003, 23 (35): 11178-11188.
CAS
PubMed
Google Scholar
Jones EG: The Thalamus. 2007, Cambridge, UK: Cambridge University Press, 2
Google Scholar
Hofbauer A, Drager UC: Depth segregation of retinal ganglion cells projecting to mouse superior colliculus. J Comp Neurol. 1985, 234 (4): 465-474. 10.1002/cne.902340405.
Article
CAS
PubMed
Google Scholar
Eglen SJ: The role of retinal waves and synaptic normalization in retinogeniculate development. Philos Trans R Soc Lond B Biol Sci. 1999, 354 (1382): 497-506. 10.1098/rstb.1999.0400.
Article
PubMed Central
CAS
PubMed
Google Scholar
Butts DA, Kanold PO, Shatz CJ: A burst-based "Hebbian" learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement. PLoS Biol. 2007, 5 (3): e61-10.1371/journal.pbio.0050061.
Article
PubMed Central
PubMed
Google Scholar
Bito H, Deisseroth K, Tsien RW: Ca2+-dependent regulation in neuronal gene expression. Curr Opin Neurobiol. 1997, 7 (3): 419-429. 10.1016/S0959-4388(97)80072-4.
Article
CAS
PubMed
Google Scholar
West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ, Takasu MA, Tao X, Greenberg ME: Calcium regulation of neuronal gene expression. Proc Natl Acad Sci USA. 2001, 98 (20): 11024-11031. 10.1073/pnas.191352298.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rakic P: Development of visual centers in the primate brain depends on binocular competition before birth. Science. 1981, 214 (4523): 928-931. 10.1126/science.7302569.
Article
CAS
PubMed
Google Scholar
Chalupa LM, Williams RW: Organization of the cat's lateral geniculate nucleus following interruption of prenatal binocular competition. Hum Neurobiol. 1984, 3 (2): 103-107.
CAS
PubMed
Google Scholar
Rossi FM, Pizzorusso T, Porciatti V, Marubio LM, Maffei L, Changeux JP: Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc Natl Acad Sci USA. 2001, 98 (11): 6453-6458. 10.1073/pnas.101120998.
Article
PubMed Central
CAS
PubMed
Google Scholar
Muir-Robinson G, Hwang BJ, Feller MB: Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci. 2002, 22 (13): 5259-5264.
CAS
PubMed
Google Scholar
Grubb MS, Rossi FM, Changeux JP, Thompson ID: Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron. 2003, 40 (6): 1161-1172. 10.1016/S0896-6273(03)00789-X.
Article
CAS
PubMed
Google Scholar
Grubb MS, Thompson ID: Visual response properties in the dorsal lateral geniculate nucleus of mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. J Neurosci. 2004, 24 (39): 8459-8469. 10.1523/JNEUROSCI.1527-04.2004.
Article
CAS
PubMed
Google Scholar
Bansal A, Singer JH, Hwang BJ, Xu W, Beaudet A, Feller MB: Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. J Neurosci. 2000, 20 (20): 7672-7681.
CAS
PubMed
Google Scholar
Muir-Robinson G, Hwang BJ, Feller MB: Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci. 2002, 22 (13): 5259-5264.
CAS
PubMed
Google Scholar
McLaughlin T, Torborg CL, Feller MB, O'Leary DD: Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron. 2003, 40 (6): 1147-1160. 10.1016/S0896-6273(03)00790-6.
Article
CAS
PubMed
Google Scholar
Sun C, Warland DK, Ballesteros JM, DA List van der, Chalupa LM: Retinal waves in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA. 2008, 105 (36): 13638-13643. 10.1073/pnas.0807178105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Torborg CL, Hansen KA, Feller MB: High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nat Neurosci. 2005, 8 (1): 72-78. 10.1038/nn1376.
Article
PubMed Central
CAS
PubMed
Google Scholar
Galli L, Maffei L: Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science. 1988, 242 (4875): 90-91. 10.1126/science.3175637.
Article
CAS
PubMed
Google Scholar
Maffei L, Galli-Resta L: Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci USA. 1990, 87 (7): 2861-2864. 10.1073/pnas.87.7.2861.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meister M, Wong RO, Baylor DA, Shatz CJ: Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science. 1991, 252 (5008): 939-943. 10.1126/science.2035024.
Article
CAS
PubMed
Google Scholar
Shatz CJ, Kirkwood PA: Prenatal development of functional connections in the cat's retinogeniculate pathway. J Neurosci. 1984, 4 (5): 1378-1397.
CAS
PubMed
Google Scholar
Jaubert-Miazza L, Green E, Lo FS, Bui K, Mills J, Guido W: Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci. 2005, 22 (5): 661-676. 10.1017/S0952523805225154.
Article
PubMed
Google Scholar
Mooney R, Penn AA, Gallego R, Shatz CJ: Thalamic relay of spontaneous retinal activity prior to vision. Neuron. 1996, 17 (5): 863-874. 10.1016/S0896-6273(00)80218-4.
Article
CAS
PubMed
Google Scholar
Weliky M, Katz LC: Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. Science. 1999, 285 (5427): 599-604. 10.1126/science.285.5427.599.
Article
CAS
PubMed
Google Scholar
Wong RO, Oakley DM: Changing patterns of spontaneous bursting activity of on and off retinal ganglion cells during development. Neuron. 1996, 16 (6): 1087-1095. 10.1016/S0896-6273(00)80135-X.
Article
CAS
PubMed
Google Scholar
Huberman AD, Speer CM, Chapman B: Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1. Neuron. 2006, 52 (2): 247-254. 10.1016/j.neuron.2006.07.028.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cang J, Renteria RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP: Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron. 2005, 48 (5): 797-809. 10.1016/j.neuron.2005.09.015.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pfeiffenberger C, Yamada J, Feldheim DA: Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. J Neurosci. 2006, 26 (50): 12873-12884. 10.1523/JNEUROSCI.3595-06.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nicol X, Voyatzis S, Muzerelle A, Narboux-Neme N, Sudhof TC, Miles R, Gaspar P: cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nat Neurosci. 2007, 10 (3): 340-347. 10.1038/nn1842.
Article
CAS
PubMed
Google Scholar
Kawasaki H, Crowley JC, Livesey FJ, Katz LC: Molecular organization of the ferret visual thalamus. J Neurosci. 2004, 24 (44): 9962-9970. 10.1523/JNEUROSCI.2165-04.2004.
Article
CAS
PubMed
Google Scholar
Leamey CA, Merlin S, Lattouf P, Sawatari A, Zhou X, Demel N, Glendining KA, Oohashi T, Sur M, Fassler R: Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision. PLoS Biol. 2007, 5 (9): e241-10.1371/journal.pbio.0050241.
Article
PubMed Central
PubMed
Google Scholar
Huberman AD, Murray KD, Warland DK, Feldheim DA, Chapman B: Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nat Neurosci. 2005, 8 (8): 1013-1021. 10.1038/nn1505.
Article
PubMed Central
CAS
PubMed
Google Scholar