Skip to main content
Fig. 2 | Neural Development

Fig. 2

From: Bacurd1/Kctd13 and Bacurd2/Tnfaip1 are interacting partners to Rnd proteins which influence the long-term positioning and dendritic maturation of cerebral cortical neurons

Fig. 2

Forced expression of Kct13 or Tnfaip1 leads to altered dendritic complexity of layer II/III projection neurons within the P17 mouse cortex. a Representative 3D reconstructions of layer II/III control neurons within the P17 mouse cerebral cortex following control, Kctd13 and Tnfaip1 treatment at E14.5 (b) Sholl analysis reveals significant differences in the dendritic arborisation of neurons upon forced expression of Kctd13 or Tnfaip1 (15 and 23 cells analysed respectively) compared with controls (17 cells analysed). c The number of primary neurites was not significantly different between control and Kctd13 or Tnfaip1 treatments (N > 15 cells from >6 brains per condition; F 2,52 = 1.283; P = 0.2858 One way ANOVA followed by Bonferroni post-hoc test). d There was a significant increase in the number of branch points upon overexpression of Tnfaip1 when compared with control treatment. (F 2,52 = 4.781; P = 0.0124 One way ANOVA followed by Bonferroni post-hoc test). e-g An Analysis of Covariance (ANCOVA) of Sholl profiles for control and Kctd13- or Tnfaip1-treated neurons (40–100 μm distal from the soma) reveals significant differences in both the slope (p < 0.05) and elevation (p < 0.05) of the lines of best fit when comparing with control, indicating that Kctd13- and Tnfaip1-treated neurons are more complex (e-f). Also, ANCOVA analysis reveals that Kctd13-treated neurons are significantly more complex than Tnfaip1-treated neurons (g). Scale bar represents 20 μm

Back to article page