Skip to main content
Fig. 1 | Neural Development

Fig. 1

From: Bacurd1/Kctd13 and Bacurd2/Tnfaip1 are interacting partners to Rnd proteins which influence the long-term positioning and dendritic maturation of cerebral cortical neurons

Fig. 1

Bacurd1/Kctd13 and Bacurd2/Tnfaip1 are interacting partners to Rnd2/3, and their forced expression impairs the long-term positioning of E14.5-born cortical projection neurons. a-b Bacurd1/Kctd13 and Bacurd2/Tnfaip1 interact with Rnd2 and Rnd3 in vitro. Immunoprecipitation was performed with cell lysates of HEK293T cells transiently transfected with expression constructs encoding FLAG-tagged Rnd2 together with EGFP, EGFP-Kctd13 and EGFP-Tnfaip1 (a), or with FLAG-tagged Rnd3 together with EGFP, EGFP-Kctd13 and EGFP-Tnfaip1 (b). Antibodies against EGFP was incubated with the respective lysates, followed by immuno-blotting with antibodies against FLAG-tagged Rnd proteins. A reciprocal experiment was performed in which immunoprecipitation was performed using FLAG antibodies followed by immunoblotting for EGFP. Input panels show Western blot analysis of inputs confirming the presence of all proteins evaluated in this experiment. c Forced expression of either Kctd13 or Tnfaip1 results in a significant disruption in the long-term positioning of cortical neurons. Representative images of postnatal day 17 (P17) cortices electroporated with control (GFP only) vector, Kctd13 or Tnfaip1 constructs at E14.5 and analysed at P17. d There is a significant effect on the distribution of E14.5-labelled cells within the P17 cortex upon forced expression of Kctd13 or Tnfaip1 (N > 5000 cells from >6 brains per condition; F 6,80 = 24.42; p < 0.0001; Two-way ANOVA followed by Bonferroni post-hoc test. Graph plots means ± SEM; *** p < 0.001; # p < 0.05). e Forced expression of Kctd13 or Tnfaip1 does not significantly alter the proportion of GFP-labelled cells which co-express the projection neuron marker Cux1 (F 2,20 = 2.676, p = 0.09 One-Way ANOVA, images from at least 6 brains per condition were evaluated). Scale bar represents 100 μm

Back to article page