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The role of astrocyte‐mediated plasticity in
neural circuit development and function
Nelson A. Perez-Catalan1,2 , Chris Q. Doe1 and Sarah D. Ackerman1*

Abstract

Neuronal networks are capable of undergoing rapid structural and functional changes called plasticity, which are
essential for shaping circuit function during nervous system development. These changes range from short-term
modifications on the order of milliseconds, to long-term rearrangement of neural architecture that could last for the
lifetime of the organism. Neural plasticity is most prominent during development, yet also plays a critical role
during memory formation, behavior, and disease. Therefore, it is essential to define and characterize the
mechanisms underlying the onset, duration, and form of plasticity. Astrocytes, the most numerous glial cell type in
the human nervous system, are integral elements of synapses and are components of a glial network that can
coordinate neural activity at a circuit-wide level. Moreover, their arrival to the CNS during late embryogenesis
correlates to the onset of sensory-evoked activity, making them an interesting target for circuit plasticity studies.
Technological advancements in the last decade have uncovered astrocytes as prominent regulators of circuit
assembly and function. Here, we provide a brief historical perspective on our understanding of astrocytes in the
nervous system, and review the latest advances on the role of astroglia in regulating circuit plasticity and function
during nervous system development and homeostasis.
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Background
Nervous system assembly requires precise coordination
between the formation of millions of synapses and inte-
gration of these synapses into functional circuits. Failure
to do so leads to significant life-altering neurodevelop-
mental and neurodegenerative disorders [1–5]. Between
2006 and 2008, approximately 15% of children aged
three to seventeen were affected by neurological disor-
ders in the United States alone [6]; thus, understanding
the mechanisms that regulate proper neural develop-
ment will have a direct impact on human health.
Glial cells help coordinate synapse formation and cir-

cuit assembly. Additionally, they monitor, instruct, and
support neuronal activity in mature circuits [6, 7].

Astrocytes, the most abundant subtype of glial cells in
the central nervous system (CNS), are classically known
for their roles in neurovascular coupling and metabolic
support of neurons during homeostasis [8]. In the ma-
ture nervous system, astrocytes directly contact the
neuronal soma, dendrites, spines, and presynaptic termi-
nals (Fig. 1) [9], thus they are uniquely poised to regulate
neuronal function.

Astrocyte heterogeneity in the nervous system
Astrocytes have been described as a homogenous popu-
lation of cells since their discovery [10], yet, a growing
body of evidence now suggests that astrocytes are highly
diverse in their morphology, gene expression profiles,
and functionality [11–16]. For example, in the develop-
ing vertebrate spinal cord, differential expression of mor-
phogens from the dorsal and ventral poles generates
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neurons belonging to eleven distinct functional domains
organized along the dorsal-ventral axis [17]. Astrocytes
tile throughout the vertebrate spinal cord, and interest-
ingly, spinal cord astrocytes also show domain-specific
expression profiles, leading to the hypothesis that
domain-specific astrocytes represent subclasses. Indeed,
a recent report found that depletion or mutation of as-
trocytes from the pMN domain of the mouse spinal cord
disrupted sensorimotor circuit formation and mainten-
ance, and that astrocytes from neighboring domains do
not repopulate the region to compensate [12, 13]. More
recently, in situ single-cell gene expression analyses of
cortical astrocytes found laminar organization of astro-
cyte transcriptomes, as well as markers for superficial,
mid and deep astroglial populations in adult mouse and
human cortex [18]. Disruption of neuronal differenti-
ation in murine cortical layers L2-4 resulted in aberrant
astrocyte organization in the superficial layers. More-
over, inversion of neuronal layers in the cortex at post-
natal day 14 (P14) resulted in similarly upturned
astrocytic marker expression. Together, these data dem-
onstrate that astrocytes show region-specific expression
and function [19]. It remains to be tested whether these
changes are astrocyte-intrinsic, or whether the neuronal
microenvironment resolves local astroglial identity.

Astrocyte expansion coincides with synapse development
Recent data suggest that astrocytes are also critical
regulators of nervous system development [8, 20]. In-
deed, studies from multiple model systems suggest

that the expansion of astrocytic membrane domains
occurs in tandem with the birth and refinement of
synapses within individual circuits, including visual
processing, attention, memory, and motor control
pathways [21–28]. Astrocytes extend fine processes to
establish non-overlapping territories after the first
postnatal week in the developing mouse cortex, coin-
cident with synaptogenesis [29]. The timing of astro-
cyte migration and expansion in the developing spinal
cord occurs earlier in rodents, ranging from late pre-
natal stages to postnatal day seven [30]. Similarly, as-
trocytes extend processes into the Drosophila ventral
nerve cord (analogous to the vertebrate spinal cord)
during the final stage of embryogenesis [31], and by 6
days post-fertilization in the developing zebrafish
spinal cord [32]. In humans, astrocytes are born in
late fetal stages [33]. Although studies of human
astrocyte development are challenging and a precise
timecourse of human astrocyte-synapse association
has yet to be done [34, 35] a single cortical human
astrocyte can extend processes from the soma that
gradually ensheath upwards of two million individual
synapses [36]. It is noteworthy to mention that hu-
man astrocytes are larger, more structurally complex,
and more diverse than astrocytes in any other chor-
dates assessed to date [14, 36–39]. In each case, the
expansion of astrocytic membranes into the neuropil
occurs alongside synaptogenesis. Together, these stud-
ies intimated that astrocyte-derived cues could influ-
ence synapse development, and vice versa.

Fig. 1 Astrocytes locally support neuronal synapses.a Light microscopy image of single astrocyte (cyan) contacting the pre-synaptic membrane of
the Drosophila A18b neuron (magenta), with pre-synapses highlighted in the inset (yellow). First instar larva. Genotype: A18b (94E10-lexA;
8xlexAop-2xBrp-short::cherry; lexAop-myr::GFP), astrocyte (25h07-gal4; hs-FLPG5;; 10xUAS(FRT.stop)myr::smGdP-HA, 10xUAS(FRT.stop)myr::smGdP-V5,
10xUAS-(FRT.stop)myr::smGdP-FLAG). Scale bar, 200 nm. b TEM image showing a single astrocyte (cyan) contacting the pre-synaptic membrane of
the A18b neuron (magenta), and the post-synaptic membrane of an A27a neuron (green) with synapses highlighted (yellow asterisks). Genotype:
wild type. First instar larva. Scale bar, 500 nm
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Astrocyte regulation of synapse number
Given the relatively late timecourse of astrogenesis dur-
ing nervous system development, astrocytes are not
present to regulate embryonic waves of neurogenesis
and axon outgrowth. Though outside the scope of this
review, note that astrocytes do form part of the neuro-
genic niche that regulates adult neurogenesis (reviewed
in [40]), and that reactive astrocytes regulate axon re-
growth and recovery after nervous system injury [41].
During early postnatal development, astrocytes elaborate
their fine processes concurrent with synaptogenesis. The
timing of astrocyte arrival in the CNS, and their strategic
positioning of peri-synaptic processes, make astrocytes
an attractive candidate to promote assembly of neurons
into neural circuits. We now appreciate that these roles
include, but are not limited to, structural and functional
synaptogenesis [21, 25, 26, 42], synapse pruning [43, 44],
and synapse maintenance [13].

Astrocytes in synaptogenesis
A role for astrocytes in synaptogenesis was first defined
in the lab of Dr. Ben Barres by taking advantage of
mouse retinal ganglion cell (RGC) culturing systems.
These pioneering studies demonstrated that addition of
astrocytes to neuronal cultures was sufficient to promote
synapse formation and spontaneous activity of RGC neu-
rons, which are largely inactive in the absence of glial
support [28, 45, 46]. A similar role for astrocytes in pro-
moting synaptogenesis using rat RGC microcultures was
described shortly thereafter [47], and more recently in
cultured human cerebral cortical spheroids [48]. To-
gether, these data provide direct cross-species evidence
that astrocytes are able to directly promote circuit devel-
opment and function in vitro. Genetic access to astro-
cytes during circuit assembly was not available until
recently [49–53], yet these advances have rapidly ex-
panded our understanding of the contribution of astro-
cytes to circuit development. Advances on invertebrate
and vertebrate in vivo animal models demonstrate that
astrocytes are regulators of neural circuit assembly in C.
elegans [54, 55]; Drosophila [56, 57]; feline [58]; Xenopus
[59]; rodent [8, 25, 28, 47]; and human [60, 61].
Over the last decade, we have greatly expanded our

understanding of the molecular mechanisms by which
astrocytes regulate synaptogenesis. Astrocyte-derived
(secreted and membrane bound) synaptogenic and anti-
synaptogenic cues dynamically interact to finely tune
synapse number during neural circuit assembly [8, 62].
As these pathways have been extensively covered else-
where [8, 63], here we focus specifically on Hevin and
SPARC, which are essential for the generation of func-
tional synapses during mammalian nervous system de-
velopment, and also regulate synapse plasticity
(discussed below) [26]. These proteins are of additional

interest given that the upregulation of their expression
profiles has been linked to neurodevelopmental disor-
ders [64] and reactive astrogliosis in adults [65–67]. The
matricellular protein Hevin is secreted by astrocytes lo-
calized to excitatory CNS synapses throughout the or-
ganism’s life, and peaks in its expression during
synaptogenesis and following CNS injury [14, 67–69].
Extensive studies of retinocollicular and thalamocortical
synapse development have demonstrated that Hevin is
required for the formation and maturation of gluta-
matergic synapses [26, 27, 70]. In the latter case, Hevin
refines thalamic presynaptic inputs onto cortical den-
drites by bridging pre-synaptic Neurexin-1α to dendritic
Neuroligin-1B, and loss of Hevin causes a reduction of
mature glutamatergic synapses [27]. Astrocytes also pro-
duce SPARC (Secreted Protein Acidic and Rich in Cyst-
eine), which acts as a competitive inhibitor to antagonize
Hevin-induced synaptogenesis. According, while Hevin
null mice show decreased numbers of excitatory synap-
ses in the superior colliculus, SPARC KO mice show en-
hanced synaptogenesis in the same brain region at P14
[26]. Interestingly, SPARC does not inhibit excitatory
synaptogenesis induced by astrocyte-derived thrombos-
pondins, but is a specific antagonist of Hevin. Because
these proteins are not known to physically interact, it re-
mains to be seen how Hevin and SPARC function to-
gether to tune synapse number in vivo [26]. More
recently, a novel in vivo enzymatic assay defined a prote-
ome for extracellular astrocyte-neuron junctions in the
primary visual cortex (V1 cortex) and found that astro-
cytic Neuronal Cell Adhesion Molecule (NRCAM) binds
to NRCAM-gephyrin complexes on postsynaptic neu-
rons to induce the formation and function of inhibitory
GABAergic synapses, with only minor effects on excita-
tory synapses [71]. Together, these results identify a dir-
ect role for astrocytes in the control of excitatory and
inhibitory synapse assembly and maturation in vivo,
while also displaying the heterogeneity of astroglial cues
depending on the synapse subtype.

Astrocytes in synapse pruning
Overproduction of synapses and their subsequent
experience-dependent elimination is critical for refine-
ment of neuronal circuits during development [72]. This
is especially well-characterized during ocular dominance
plasticity (discussed further below), and during Drosoph-
ila circuit rewiring in metamorphosis and regeneration
[43, 59]. In 2013, Chung et al., demonstrated that astro-
cytes and microglia participate in synapse elimination
via two activity-dependent phagocytic receptors,
MEGF10 and MERTK, which trigger engulfment of exci-
tatory and inhibitory synapses in the developing mouse
visual system (Fig. 2c). Loss of MEGF10 in mouse results
in a failure to refine retinogeniculate connections in the
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developing visual system, resulting in ectopic synapses
with reduced functionality [43]. Similarly, the Drosophila
homolog of MEGF10, Draper, is necessary for clearance
of axons during injury and during circuit remodeling
[44, 73, 74]. A feature of the adult CNS is its ability to
engage in activity-dependent synaptic plasticity during
learning and memory [75]. Strikingly, MEGF10 and
MERTK-dependent synaptic engulfment by astrocytes
continues through adulthood in both murine and human
cortical layers, which may contribute to learning, mem-
ory, and disease [43, 76, 77]. A recent report in Drosoph-
ila discovered that during a critical period of brain
development in young adults, the extracellular domain
of the amyloid precursor protein-like (APPL, homolo-
gous to human APP) regulates glial expression of Draper
and clearance of neuronal debris after injury [78]. It will
be interesting to test whether APPL/APP also regulates

developmental pruning of synapses. Thus, the number of
synapses on a neuron is not exclusively an intrinsic
property but is heavily regulated by glial signals.

Astrocytes tune synapse function and synaptic
plasticity
The establishment of functional neuronal circuits does
not only depend on early synaptogenic and pruning pro-
cesses. To achieve precise CNS wiring, the developing
nervous system must be able to adapt to the onset of
neural activity, which can induce extensive, activity-
dependent functional and structural remodeling of ma-
ture synapses [79]. Also known as plasticity, these re-
structuring events are usually driven by the arrival of
environmental stimuli via sensory afferents [80, 81]. The
progression from immature to functionally effective

Fig. 2 Select mechanisms for astrocyte-induced plasticity. a Hebbian plasticity. Recruitment of NMDA receptors is mediated by astrocyte-derived
Hevin and the cell adhesion molecules Neuroligin-1 (NL1) and Neurexin-1 (Nrxn1) during the ocular dominance plasticity critical period. Astrocyte
chondroitin sulfate proteoglycans (CSPGs) and SPARC stabilize AMPA postsynaptic receptors. Astrocyte gap junction proteins Connexins 30 and
43 regulate metabolite transport through monocarboxylate transporters (MCT1/2) between astrocytes and neurons in an activity-dependent
manner to facilitate plasticity. b Homeostatic plasticity. Astrocyte-derived SPARC limits aggregation of AMPA receptors to facilitate synaptic scaling
in response to chronic silencing. Additionally, receptors and transporters located in the astrocytic membrane monitor neuronal Ca2+ transients
and release of neurotransmitters, resulting in gliotransmitter release. c Structural-homeostatic plasticity. Astrocyte-secreted Chrdl1 restricts
neuronal plasticity by directly switching postsynaptic neurotransmitter receptor identity. Astrocyte-derived Neuroligin (NL) binds dendritic
Neurexin (Nrxn) to mediate the closure of critical periods by stabilizing dendrite microtubule populations. Synapse elimination is driven by
neuronal activity, and is regulated by astroglial MERTK and MEGF10. d Repeated excitatory postsynaptic potentials evoke more robust synaptic
activity in potentiated circuits over time. Conversely, synapses targeted by long term depression display lower levels of excitability
following stimulation. e Homeostatic mechanisms decrease the difference between synaptic input and output by bidirectionally adjusting the
probability of transmitting an action potential postsynaptically
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neuronal circuits that drive robust behavior is dependent
on careful regulation of short- and long-term remodel-
ing events. These events are strongly enriched during
developmental windows called critical periods [80, 82]. If
changes in synaptic strength are not carefully regulated,
the activity passing through a given neuronal circuit
could increase or decrease unchecked, resulting in ab-
normal activity patterns, the loss of sensitivity for synap-
tic partners, or excitotoxicity [79, 83, 84].
Functional and structural modifications to synapse and

circuit function are generally categorized as either Heb-
bian or homeostatic plasticity (Fig. 2a-c). During Heb-
bian plasticity, coincident activity at pre- and post-
synaptic sites causes modifications that alter synaptic ef-
ficacy through a positive feedback loop (Fig. 2d). The
most widely studied form of Hebbian plasticity is long-
term potentiation (LTP), which underlies long-term
memory [79, 85–87]. Hebbian plasticity usually occurs
at single synapse scale rather than circuit-wide scale,
where an increase in presynaptic firing increases the
probability of a further increase in postsynaptic gain [79,
88]. Conversely, homeostatic plasticity is a negative feed-
back mechanism that is activated in response to chronic
changes to activity and serves to prevent runaway excita-
tion/inhibition in response to Hebbian plasticity (Fig. 2e).
Although homeostatic plasticity can function on individ-
ual synapses [89, 89], it also functions on the scale of
whole neurites, neurons, and even to balance levels of
activity through an entire circuit via functional and
structural remodeling [88, 90–93]. The changes that
arise from these dynamic remodeling events can have
profound effects on circuit function, behavior, and hu-
man health [82], yet the developmental mechanisms that
promote or restrict plasticity are not yet fully understood
at the cellular or molecular level.

Astrocytes regulate hebbian plasticity, one synapse at a
time
Following the discovery of Hebbian plasticity over half a
century ago [85], many different forms of remodeling
have been identified, including both local (synaptic) and
circuit-wide [79, 80, 86]. However, studies of neurons
alone have failed to reveal how circuit plasticity is estab-
lished and circuit balance is maintained. As mentioned
above, RGCs cultured in the presence of astrocytes show
elevated neuronal activity [46]. Recent advancements in
microscopy and genetic strategies for monitoring glial
cell populations have led to a new awareness for how
astrocytic networks are strategically arranged to support
and modify synaptic activity [47, 94, 95].
In the mammalian CNS, glutamate triggers ion flow

through N-methyl-D-aspartate receptors (NMDARs) on
postsynaptic membranes to power excitatory neuro-
transmission [96]. Repeated stimulation of sensory and

learning pathways (such as those in the hippocampus)
can enhance recruitment of NMDARs to the postsynap-
tic terminal, thereby increasing the efficacy of long-term
synaptic transmission (e.g. LTP) [97, 98]. In addition, the
concentration of α-amino-3-hydroxy-5-methyl-4-isoxa-
zolepropionic receptors (AMPARs) on postsynaptic
membranes can alter short-term synaptic plasticity [99].
As aforementioned, astrocytes secrete the matricellular
protein Hevin, which increases the number and size of
excitatory synapses in RGC cultures and in vivo during
development of the visual system [26, 27, 70]. Recent
studies revealed an additional role for Hevin in neuronal
plasticity. During ocular dominance plasticity (ODP),
monocular deprivation weakens synapses downstream of
the closed eye, while cortical connections downstream of
the open eye are coincidently strengthened [58, 100–102].
This process is dependent on the differential recruitment
of post-synaptic NMDARs [101, 103–105]. Astrocyte-
derived Hevin organizes presynaptic Neurexins and post-
synaptic Neuroligins (binding partners), thereby aligning
the pre-synaptic neurotransmitter release machinery with
post-synaptic NMDARs during the ODP critical period
(Fig. 2a) [27, 106]. Accordingly, Hevin null mice exhibit
reduced ODP, which can be rescued upon viral delivery of
Hevin to astrocytes [27]. Interestingly, though Hevin and
SPARC have opposing functions in synaptogenesis, synap-
tic plasticity (LTP) is also reduced in the hippocampus of
SPARC null mice. Reduced LTP in SPARC null animals is
not the result of decreased NMDAR localization, but ra-
ther increased levels of AMPARs on postsynaptic mem-
branes and enhanced baseline activity of these synapses
[107]. These data suggest that during developmental plas-
ticity, Hevin and SPARC function together to fine-tune
the ratio of NMDARs to AMPARs to facilitate LTP. Over-
all, these data demonstrate that astrocytes modulate syn-
aptic strength by regulating post- and presynaptic
receptor composition.

Astrocyte tiling and synaptic transmission
Bidirectional communication between astrocytes and syn-
aptic terminals is critical for the establishment and main-
tenance of neuronal transmission [8, 106]. A property of
astrocytes that expands the complexity of these interactions
is the capacity of a single astrocyte to associate with mil-
lions of synapses within an expanded glial network. This
network is generated by gap junctions (GJs) that allow
neighboring astrocytes to tile with one another, yet main-
tain non-overlapping territories [108–110]. GJs are intercel-
lular channels that integrate astrocytes into functional
syncytia, which facilitate signaling and transport of metabo-
lites between neuronal and non-neuronal tissues [111, 112].
The GJ proteins connexin 30 (Cx30) and connexin 43
(Cx43) are highly expressed in astrocytes [69, 113], and act
to shuttle glucose and its metabolites (lactate) from
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astrocytes to neurons in an activity-dependent manner
(Fig. 2a) [111, 114, 115]. In the absence of astroglial Cx30
and Cx43, astrocyte-dependent glutamate recycling and
potassium buffering at the synapse is impaired. This re-
sults in enhanced excitability at hippocampal CA1 Schaf-
fer collateral synapses due to increased levels of AMPARs
[94]. Interestingly, analysis of synapse numbers on CA1
neurons of Cx30−/−Cx43−/− mice revealed that while the
overall number of synapses remains unchanged in the ab-
sence of GJs, the pool of silent synapses was significantly
decreased. This led to defects in Hebbian plasticity, in-
cluding suppressed LTP and increased occurrences of
long-term depression. Disruptions to astrocyte GJ proteins
have been linked to impairments in LTP during memory
allocation and stress in the mammalian hippocampus
[115–117]; thus, GJ-dependent astrocyte communication
is critical for developmental learning and behavior.

Astrocyte‐derived extracellular matrix modifies synaptic
plasticity
Finally, astrocytes may influence synaptic efficacy through
modulation of the extracellular environment [118]. Chondro-
itin sulfate proteoglycans (CSPGs) are glycosylated, extracellu-
lar matrix proteins secreted by both neurons and glia that
form integral components of perineuronal nets (PNNs). PNNs
are lattice-like aggregates of CSPGs surrounding neuronal
processes [119]. PNNs emerge in concert with the arrival of
astrocytes during late postnatal development, corresponding
with the closure of critical periods of experience-dependent
plasticity [82, 120]. CSPGs act as lateral diffusion barriers for
AMPARs, and can therefore facilitate post-synaptic receptor
composition to modulate short-term synaptic plasticity
(Fig. 2a) [121]. It was recently shown that removal of PNNs
from the mouse deep cerebellar nuclei increased synaptic plas-
ticity and improved active learning during eyeblink condition-
ing, a form of motor learning. Conversely, loss of PNNs
inhibited the formation of eyeblink-associative memories
[122]. Although astrocytes express a variety of CSPGs during
nervous system development [14, 69] and following injury
[123–125], the relative contribution of astrocyte to neuron-
derived ECM for circuit development and plasticity remains
poorly defined [126, 127]. An important open question is
whether astrocytic CSPGs modulate AMPAR aggregation
in vivo during circuit assembly. In addition, it remains un-
known whether astrocyte-derived and neuronal-derived
CSPGs trigger different signaling cascades. This is especially
critical to determine because altered CSPG signaling is linked
to poor outcomes in injury and disease [123–125, 128–131].

Astrocytes are key regulators of homeostatic
plasticity, from synapses to circuits
Homeostatic plasticity arises in response to prolonged
changes in network activity, shifting the balance away
from extreme excitation (E) or inhibition (I) to maintain

E/I balance. Thus, a neuron can preserve its ability to re-
spond to activity via Hebbian plasticity by maintaining a
functional state of excitability [132]. This form of plasti-
city was first theorized to exist as a “normalizing” force
in mathematical models of circuit function [133–135], as
the technology to detect, characterize, and confirm
homeostatic plasticity was not available until much later
[136–141]. Homeostatic plasticity has the capacity to
modify multiple substrates within neural circuits. Synap-
tic scaling is a homeostatic mechanism that alters the
strength of individual synapses, which can modify the
activity and function of neurotransmission for a single
neuron [132, 142]. Synaptic scaling is a modification to
the number of AMPAR at the post-synaptic terminal,
which can reduce synaptic strength and the probability
of a postsynaptic potential. Modifications to neurotrans-
mission through synaptic scaling can take place either by
removing AMPARs locally at the terminal [143], or glo-
bally, by affecting the rate of transcription of AMPARs
within a circuit [144]. Although several neuronal mecha-
nisms for homeostatic plasticity have been defined [141],
a looming question is to determine how this form of
plasticity is regulated at the circuit level. The juxtapos-
ition of synapses and perisynaptic processes of astrocytes
(Fig. 1) makes them a great target to study regulation of
homeostatic plasticity [88, 145].
We now understand that astrocytes secrete a number

of proteins that modulate homeostatic plasticity at the
synaptic and circuit level. A well-documented example is
SPARC [146, 147]. As noted above, analysis of cultured
hippocampal slices from astrocyte-specific SPARC
knock-out mice revealed increased numbers of postsyn-
aptic GluR2 receptor subunits, which caused an ectopic
accumulation of postsynaptic surface AMPARs and im-
paired LTP following high frequency stimulation [107].
Accordingly, loss of SPARC inhibits synaptic scaling fol-
lowing activity deprivation by TTX (Fig. 2c) [107]. These
data demonstrate that astrocytes can co-opt the same
signaling pathways to regulate both Hebbian and
homeostatic plasticity during circuit assembly.
During critical periods, activity across circuits can also

alter neuronal architecture, ranging from retraction/ex-
tension of individual synaptic elements to modifications
to dendrites and axons. This form of plasticity, also
known as homeostatic structural plasticity, can drastic-
ally affect the probability of forming synapses between
neighboring neurons by physically increasing or decreas-
ing membrane space [88, 90, 92, 93, 148, 149]. Recent
work has defined important roles for astrocytes in
homeostatic structural plasticity [42, 93, 150]. In the
CNS, astrocyte-secreted Chordin like-1 (Chrdl1) was
shown to regulate the switch from AMPAR to GluA2-
containing synapses in the developing mouse cortex
[42]. Moreover, in a monocular enucleation model of
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ocular dominance homeostatic plasticity (reviewed in
[151]), Chrdl1 knock-out resulted in ectopic synaptic re-
modeling events, suggesting that astrocytes use Chrdl1
to restrict neuronal plasticity (Fig. 2c). Excitingly, a re-
cent report demonstrated that astrocytes close a critical
period of motor dendrite remodeling in the Drosophila
CNS via astrocyte Neuroligin to motor neuron Neurexin
signaling (Fig. 2c) [93]. Importantly, this study pinpoints
astrocytes as a putative target in critical period-
dependent neurodevelopmental disorders [152].

Astrocytes shape neuronal signaling
Although astrocytes themselves are not electrically excit-
able, astrocytes measure local synaptic activity via me-
tabotropic and ionotropic-sensing receptors [153–155].
Interestingly, astrocytes display Ca2+ transients that mir-
ror neuronal activity [156–160]. In Drosophila, astrocyte
Ca2+ signaling in the ventral nerve cord occurs in paral-
lel with motor waves [161]. Similarly, co-imaging of
Ca2+ transients in astrocytes and neurons following
mouse whisker stimulation demonstrated that neuronal
and glial calcium waves operate in synchrony during
sensory tasks [162, 163]. Voluntary limb movements
have also been shown to cause Ca2+ elevations of motor
cortex astrocytes in awake, moving mice, suggesting ef-
ferent activity is tightly coupled to astrocyte activation
[164]. It remains unclear whether astrocytic Ca2+ waves
originate within the gap junction-coupled astroglial net-
work, or represent the product of the linear summation
of neighboring neuronal activity [165–169]. Neverthe-
less, we now understand that activity-dependent calcium
elevation in astrocytes can induce release of small mole-
cules including glutamate, ATP, and D-serine [170–173]
in a calcium- and SNARE protein-dependent mechanism
[174]. In turn, these “gliotransmitters” modify synaptic
transmission and short-term plasticity (Fig. 3) [155, 161,
175–179]. For example, induction of calcium transients
within astrocytes by direct manipulation or via inositol
tris-phosphate-dependent signaling has been shown to de-
press or enhance synaptic transmission [154, 175, 180].
Recently, Ma et al. (2016) demonstrated that a Drosophila
TRPA1 calcium channel (Water witch) is expressed in as-
trocytes and facilitates the accumulation of calcium in re-
sponse to local neuronal activity. Astrocytic calcium can
in turn modulate downstream dopaminergic neuron activ-
ity and locomotor behavior in vivo [161]. Indeed, it is now
apparent that astrocytes are essential for rhythmic loco-
motor behaviors [93, 181–183]. In mouse, the sensory
TRPA1 Ca2+ channel similarly maintains basal astrocytic
calcium levels to facilitate constitutive D-serine release at
the synapse. Loss of TRPA1 impairs NMDA-dependent
LTP at Schaffer collateral to CA1 pyramidal neuron
synapses, demonstrating that fine astrocytic processes
tune synaptic plasticity in an activity-dependent manner

[184]. There is mounting evidence that astrocyte calcium
signaling arises to modulate sensory-evoked neuronal ac-
tivity. Well documented examples include somatosensory
stimulations that trigger Ca2+ elevations in astrocytes
which amplify stimulus-evoked cortical plasticity via nor-
adrenaline and acetylcholine [185–188]. More recently,
Lines et al. (2020) correlated the modulation of somato-
sensory afferents to astrocyte Ca2+ waves, and showed that
astrocyte activation dampens sensory-evoked neuronal ac-
tivity in S1 (primary somatosensory cortex) [160]; thus,
placing bidirectional astrocyte-neuron communication at
the center of sensory information processing in the mam-
malian cortex. This opens an exciting line of future work,
where astrocytic activation could be manipulated to
modulate neuronal activity during critical periods of cir-
cuit development and disease.

Finally, astrocyte networks may contribute to circuit
plasticity during memory allocation and goal-directed
behaviors. Ectopic activation of astrocytes is sufficient to
induce de novo NMDA-dependent LTP in CA3-CA1
pyramidal neurons [189, 190]. Interestingly, the authors
also found that while direct neuronal activation impaired
memory formation, delayed activation through astro-
cytes strongly enhanced memory allocation [190], sug-
gesting that indirect signaling through astrocytes may be
necessary to gate LTP. Indeed, a recent report suggests
that gliotransmission by astrocytes recruits metabotropic
glutamate receptors to the presynaptic terminal during
spike timing-dependent plasticity, a process that shifts
developing hippocampal synapses from long term de-
pression (LTD) to LTP [191, 192] (Fig. 3). Extensive
work in mouse models have also defined astrocytes as
key regulators of inhibition. As aforementioned,
astrocyte-derived NRCAM influences inhibitory synapse
development and function in the developing visual cor-
tex. Similarly, astrocytic activation in the limbic system
can drive depression of excitatory synapses and enhance-
ment of inhibitory synapses in the central amygdala
[179]. In the developing somatosensory cortex, astrocytic
signaling mediates spike-timing-dependent LTD [192,
193]; and in the developing prefrontal cortex, astrocytic
GABAB receptors monitor local concentrations of
GABA and in turn, regulate low gamma oscillations (see
more below) and goal-directed behaviors [194]. Thus, bi-
directional signaling between neurons and astrocytes en-
sures proper E/I balance in multiple brain regions to
shapes the flow of information through neural circuits
and facilitate neuronal plasticity that is essential for
learning, memory, and goal-directed behaviors.

Astrocytes and circuit pattern generation
It is evident that astrocytes tune synaptic and circuit
architecture during sensory-dependent plasticity. Yet,
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plasticity also occurs even during “idle” periods with lit-
tle environmental input [195–197]. Since the discovery
of electroencephalography [198], scientists have identi-
fied several rhythmic voltage fluctuations in the brain,
from individual neurons to whole neuronal networks
[199]. These oscillations emerge in all brain regions, and
their patterns underlie the basis for internal day/night
cycles, sensory representation, and short term memory
[200, 201]. Astrocytes are capable of modulating neur-
onal rhythms by mediating ion homeostasis at the syn-
apse [194, 202–206]. Interestingly, astrocyte-dependent
ion homeostasis seems to be critical for oscillatory be-
haviors such as sleep [207, 208]. Indeed, a suite of papers
describing the role of astrocytes in sleep in fly and
mouse were published in the last six months alone. In
brief, astrocytes exhibit calcium waves that follow

natural circadian rhythms- they are highest during wake
phases and lowest during sleep [207, 209]. Interestingly,
astrocytes accumulate high levels of calcium during
wake cycles in order to encode sleep need [209–211],
similar to astrocytic calcium encoding futility-induced
passivity in zebrafish [178]; enhancing astrocytic calcium
caused perpetual sleep in Drosophila [210] and reducing
astrocytic calcium is necessary for slow-wave sleep in
mouse [207]. Finally, this transition in behavioral state is
dependent on the local concentration of neurotransmit-
ters (dopamine, serotonin, and endocannabinoids)
sensed by astrocytic receptors [212, 213]. It will be inter-
esting to test whether high levels of neuronal activity
during the day also drive sleep recovery (e.g. napping) in
an astrocyte-dependent manner. Additionally, as sleep-
ing behaviors can change dramatically over the course of

Fig. 3 Select mechanisms for astrocyte-modulated neuronal signaling.Top: Simple model circuit showing three linearly connected neurons (n)
and associated astrocytes (a). at two synaptic (S) connections. Synapse 1: Influx of calcium into gap junction-coupled astrocytes via TRPA1
channels occurs in response to local neuronal activity. Elevation of astrocytic calcium causes astrocyte activation and release of gliotransmitters
including D-serine, which induces NMDAR-dependent LTP. Synapse 2: Elevation of astrocytic calcium can also drive release of the gliotransmitters
ATP and glutamate, which can stimulate pre-synaptic adenosine and metabotrophic glutamate (mGluR) receptors, respectively, to promote
signaling of downstream neurons and drive the flow of information through the circuit
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organismal development (e.g. neonate versus adult
humans) or with the seasons (e.g. torpor), it will be im-
portant to determine the degree to which astrocytes con-
tribute to sleeping behaviors outside of the standard
diurnal clock. Thus, astrocytes coordinate both develop-
mental and homeostatic circuit activity from the scale of
individual synapses to circuits.

Concluding remarks
Synaptic plasticity ensures the correct assembly and tun-
ing of millions of synapses during nervous system devel-
opment [82, 86]. From their perisynaptic location,
astroglia have been shown to organize pre- and postsynap-
tic elements that modify Hebbian mechanisms of plasticity
[27, 107, 190]. Moreover, astrocytes are also capable of
instructing homeostatic plasticity both at the synapse and
more broadly within neurons and circuits to counterbal-
ance sustained periods of augmented activity [42, 93, 145].
Astrocytes even contribute to computation within neural
networks to drive circuit and animal behavior [161, 178,
214]. Excitingly, a new study found that neuronal LTP can
induce changes in astrocyte perisynaptic coverage to facili-
tate extended crosstalk between neighboring synapses
[183]. Thus, a closer examination of how neurons and as-
trocytes bidirectionally interact and communicate during
developmental circuit plasticity is warranted. The advent
of genetic tools for visualization of astrocyte dynamics in
zebrafish should provide a rich avenue for such explor-
ation [32, 178].
Additionally, although calcium signaling in astrocyte

perisynaptic processes often occurs in parallel with neur-
onal activity [162, 163, 167, 169], global calcium levels
can act independently [166, 186]. There is recent evi-
dence suggesting that astrocyte networks modulate auto-
nomic control of heart rate, such that astrocyte Cx43-
mediated release of ATP presumably regulates excitatory
circuits in the brainstem[215]. Given the importance of
local astrocytic signaling to circuit function, unraveling
the importance of astrocyte-network signaling across
broad brain regions is a necessary future line of
research.
Finally, the rapid evolution of sequencing techniques

has made the term “astrocyte” an umbrella-like category
for a group of highly heterogeneous cells [13, 184, 185,
216]. Though there is some in vivo evidence that astro-
cytes can become locally specialized to provide circuit-
specific support [13], this remains an open area ripe for
future investigation. Future efforts should be directed at
understanding how astrocytes acquire these unique ex-
pression profiles, and how this specialization guides their
function within individual neurons and circuits. These
types of experiments will require the development of
intersectional tools that enable manipulation of specific
subpopulations of astrocytes within the intact nervous

system. Though challenging, the availability of single cell
RNA sequencing datasets will undoubtedly speed up
identification of region-specific markers that could be
used for development of tools to test how functionally
diverse astrocyte populations are in vivo, and how this
diversity ensures proper neural circuit assembly and
function.
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