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Abstract

Background: Neural tube defects (NTDs) are failure of neural tube closure, which includes multiple central nervous
system phenotypes. More than 300 mouse mutant strains exhibits NTDs phenotypes and give us some clues to
establish association between biological functions and subphenotypes. However, the knowledge about association
in human remains still very poor.

Methods: High throughput targeted genome DNA sequencing were performed on 280 neural tube closure-related
genes in 355 NTDs cases and 225 ethnicity matched controls,

Results: We explored that potential damaging rare variants in genes functioning in chromatin modification,
apoptosis, retinoid metabolism and lipid metabolism are associated with human NTDs. Importantly, our data
indicate that except for planar cell polarity pathway, craniorachischisis is also genetically related with chromatin
modification and retinoid metabolism. Furthermore, single phenotype in cranial or spinal regions displays significant
association with specific biological function, such as anencephaly is associated with potentially damaging rare
variants in genes functioning in chromatin modification, encephalocele is associated with apoptosis, retinoid
metabolism and one carbon metabolism, spina bifida aperta and spina bifida cystica are associated with apoptosis;
lumbar sacral spina bifida aperta and spina bifida occulta are associated with lipid metabolism. By contrast, complex
phenotypes in both cranial and spinal regions display association with various biological functions given the
different phenotypes.

Conclusions: Our study links genetic variant to subphenotypes of human NTDs and provides a preliminary but
direct clue to investigate pathogenic mechanism for human NTDs.
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Background

Neural tube closure (NTC) is a highly orchestrated
process wherein the neural plate bends to form the
neural folds, which then meet and fuse to close the
neural tube. In mammals, NTC initiates sequentially at
different levels of the body axis [1]. Primary neurulation
in mice initiates at the hindbrain/cervical boundary,
called closure I, and then NTC proceeds by zippering
together of the neural folds in a bidirectional manner
into the hindbrain and along the spinal region [2]. Add-
itional closure points are initiated at the rostral extrem-
ity of the forebrain (closure 3), and can also occur at the
midbrain-forebrain boundary (closure 2). Fusion pro-
gresses along the spine, culminating in final closure at
the posterior neuropore, at the level of the second sacral
segment. Formation of the spinal cord at lower sacral
and caudal levels is accomplished by a different process
called “secondary” neurulation in which condensed mes-
enchyme hollows out to form a tube. Neuromesodermal
progenitors biomechanically couple zippering point and
drive caudal NTC [3]. In human embryos, neurulation
events have been described that correspond to closure 1
and 3 in the mouse, whereas closure 2 may not occur in
human embryos [4].

Perturbations of NTC can lead to neural tube defects
(NTDs), a common and severe birth defect. Failure to
close the neural tube in the cranial region (exencephaly or
called anencephaly after degradation of the exposed neural
tissue) leads to death before or at birth. Infants born with
caudal NTDs (spina bifida) have increased risk of mortal-
ity, and those that survive often face life-long disabilities
and neurological, cognitive, urologic, and gastrointestinal
complications. A fundamental principle of neurulation is
that the levels of the body axis that undergo primary
neurulation are susceptible to “open” NTDs (for example,
anencephaly, spina bifida aperta and craniorachischisis).
By contrast, defective secondary neurulation leads to
“closed” forms of spina bifida (also called “dysraphism”
condition/spina bifida occulta), which represent the failure
of the emerging spinal cord to become separated from
other tissue derivatives of the tail bud. Failure of closure 1
leads to the most severe NTD, craniorachischisis, in which
the neural tube is open throughout the midbrain, hind-
brain and entire spinal region. If closure 1 is completed
but closure of the cranial neural tube is incomplete, this
leads to anencephaly. Failure of closure 3 is uncommon
but, when present, yields split face with anencephaly. In
the spinal region, failure of final closure at the posterior
neuropore yields open spina bifida (Spina bifida aperta/
Myelomeningocele), in which the upper limit can vary as
to the axial level, depending on precisely when the pro-
gression of zippering becomes arrested.

In addition to the complex morphogenetic movements
described above, numerous cellular and molecular
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functions must be tightly regulated to coordinate prolifera-
tion, differentiation, apoptosis, patterning and cell shape
changes. Indeed, animal models have revealed over 300
genes that regulate the process of NTC, as disruption in
the function of each gene can cause NTD. Animal models
have also revealed how some of these genes contribute to
NTC [1, 5, 6]. Narrowing and lengthening of the neural
plate requires a process called convergent extension,
wherein cell intercation mediolaterally in order to elongate
the tissue along the rostrocaudal axis. Planar cell polarity
(PCP) pathway is well documented to function in conver-
gent extension [7-9] and mutations in PCP genes lead to
failure to undergo closure 1, resulting in craniorachischisis
[10]. Signaling through the BMP, Sonic hedgehog (Shh),
FGF, Wnt pathways and cilia-related genes coordinate
patterning of the neural tissue [11, 12]. Moreover, Shh
signaling emanating from the notochord regulates dorsal
lateral hinge point formation [13] and disruption of Shh
signaling can lead to both spina bifida and exencephaly [1].
Apical constriction converts columnar cells into wedge-
shaped cells, which involves cytoskeleton proteins such as
Shroom3, Abl, and Mena [14]. Normal cytoskeletal func-
tion is required for cranial and spinal NTC and deficiency
leads to exencephaly and spina bifida [1, 15]. Cell cycle is
crucial for NTC and the balance between continued prolif-
eration and neuronal differentiation may be critical for suc-
cessful closure [1]. Live imaging has shown programmed
cell death in cranial regions during neurulation [16] as well
as dynamic cell behaviors and cell extensions during fusion
[2, 15]. Prevention of neural fold fusion leads to hindbrain
to forebrain exencephaly and thoracolumbosacral spina
bifida [17-19]. Epigenetic modifiers, such as DNA methy-
lation, chromatin modification and nucleosome assembly,
contribute to proper closure of the mammalian neural tube
[5]. Additionally, genes functioning in folate one carbon
metabolism and glucose metabolism, as well as multiple
vitamins and minerals are essential for NTC [20-22]. Des-
pite the wealth of knowledge from animal models, there re-
mains a large gap in knowledge relative to the association
of these pathways with NTD phenotypes in humans.
Direct mutation screening of candidate genes has been
carried out in cohorts of patients, largely using case-control
association studies. NTDs are considered to be a complex
disease with polygenic and multi-factorial etiology, and re-
cent studies indicate that rare allele variation can have a
large effect size of causation with respect to complex dis-
eases [23]. Mutations in PCP pathway core genes VANGLI
and VANGL?2 were explored first in craniorachischisis cases
and then other NTD patients [24, 25], and the contribution
of PCP gene mutations to human NTDs is well-established
in several cohorts [26—28]. Another major emphasis has
been on the evaluation of folate-related genes. A mutation
screening study on rare variations within 31 folate-related
genes in 480 NTD case-control population uncovered
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ethnic-specific risk signatures for spina bifida [29]. How-
ever, this has given inconsistent results between cohorts
and populations, indicating that very few of the tested
genes have a major causative effect [30]. We and others
have screened a subset of retinoid-related genes in a
range of NTD cases and found loss of function rare var-
iants in retinoic acid degradative enzyme encoded gene
CYP26B1, CYP26A1 and retinoic acid receptor encoded
genes [31-33].

To gain a broader understanding of the genetics of
NTDs, in the present study we sequenced 280 NTC-
related genes in 355 NTDs cases with multiple pheno-
types and 225 ethnicity-matched controls in a high
throughput manner. Our purpose was to identify rare
mutations in a broad set of genes found to be critical for
NTC in animal models and to then determine whether
there is a relationship with human NTD phenotypes.
This has allowed us to establish associations between
molecular functions and some NTD sub-phenotypes in
human.

Subjects and methods

Subjects

As described in our previous paper [33, 34], high-
throughput DNA sequencing were performed on genomic
DNA samples collected from 355 subjects with NTD in a
Han Chinese population ranging in age from gestational
week (GW) 12 to 10-years old and from multiple local
hospitals in six provinces in China. Two hundred twenty-
five ethnicity-matched controls were collected from non-
medically related terminations and were free of any NTDs.
The enrolled pregnant women were diagnosed by local cli-
nicians using ultrasonography. Individuals with NTDs that
had been assessed by clinical geneticists were enrolled and
were placed into at least one of the following diagnostic
groups: craniorachischisis, anencephaly, encephalocele,
spina bifida (aperta, cystica, or occulta).

The study was approved by the Committee of Medical
Ethics of the Capital Institute of Pediatrics (Beijing,
China). Written informed consent was obtained from
the parents. We carried out the study in accordance with
The Code of Ethics of the World Medical Association
(Declaration of Helsinki) for experiments involving
humans and in accordance with the approved guidelines.

Genomic DNA sequencing

Genomic DNA was extracted using a Truseq DNA
Sample preparation kit (Illumina Inc., San Diego, CA),
libraries constructed with Agilent Custom SureSelect
Enrichment Kit, and run on an Agilent Custom en-
richment array (Probe Code: BI426526171). Sequence
reads were aligned to the UCSC human genome
GRCh37/hgl9 using BWA (v0.5.9) [35]. The average
depth of coverage in the present sequencing was
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22.5X. Based on ¢cDNA sequence, nucleotide number-
ing uses +1 as the A of the ATG translation initi-
ation codon in the reference sequence, with the
initiation codon as codon 1. Single-nucleotide variants
(SNVs) were called using GATK (Samtools pileup
(MAPQ30))(version 0.1.17) [36] and Varscan [37] (mini-
mum coverage = 1, minimum alterative allele reads =1,
minimum variation frequency >0.03) and short indels
(insertions and deletions) were called using Varscan with a
standard (minimum coverage =2, minimum alternative
allele reads = 2, minimum variation frequency > 0.1). Geno-
types were called using Bayescall [38]. Variants were anno-
tated with ANNOVAR [39]. Rare variants were filtered out
using the dbSNP in NCBI, the 1000 Genomes Project, and
the shared variants in NTDs cases and controls were also
excluded.

Results

A wide range of NTD phenotypes in the current cohort
This study focuses on 355 NTD cases and 225 ethnicity-
matched controls enrolled in China during 2005-2011.
The NTD phenotypes were described as craniorachischi-
sis (anencephaly continuous with exposed spinal cord),
anencephaly (lack of brain and cranial vault subsequent
to failure to close the cranial neural tube), encephalocele
(meningeal sac, often containing brain tissue, protruding
from the skull), spina bifida aperta (exposed spinal cord,
usually called meningomyelocele), spina bifida cystica
(spinal cord defect covered by meningeal sac), spina
bifida occulta (skin-covered lesion involving two or more
vertebrae, also called spina dysraphism) [40]. As shown
in Fig. 1, 74 out of the 355 NTD cases showed cranial
deficits only. This included 17 affected with anencephaly
and 57 cases with encephalocele. Amongst encephalo-
cele cases, 2 were located in the frontal and occipital re-
gions, 35 were located in the occipital region, and 9
were in the frontal region. Of the remaining 11 encepha-
locele cases, detailed clinical information was not avail-
able (labeled encephalocele no details).

The number of cases with NTD limited to the spinal re-
gion was 178. The majority of these were spina bifida aperta
(89 cases) which occurred in lumbar-sacral segments (50/
89), thoracic-lumbar-sacral segments (20/89) and thoracic-
lumbar segments (11/89) (Fig. 1). Of the 26 spina bifida
occulta cases, the majority involved lumbar-sacral segments
(13/26) and thoracic-lumbar segments (5/26). Many of
spina bifida cystica cases did not have detailed information
on the segments involved (26/44), hence we recruited 10
lumbar-sacral spina bifida cystica. Spina bifida cystica was
not found in cervical segments (Fig. 1).

More complex phenotypes affecting both the cranial and
spinal regions were also observed. This included 19 cases of
craniorachischisis and 57 cases of anencephaly combined
with spina bifida, the majority being anencephaly with
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Fig. 1 Category for neural tube defects cases in the present study. Phenotypes are arranged as order of rostral to caudal from left to right. The
numbers in lower frames indicate summarized numbers of phenotypes

upper segment spina bifida aperta (from thoracic to occipi-
tal). Four cases exhibited anencephaly and lower level spina
bifida aperta encompassing the lumbar or sacral segments
(Fig. 1). The remaining 27 cases were encephalocele com-
bined with spina bifida aperta (Fig. 1; in 2 cases there was
no detailed clinical information).

A summary of the phenotypes in the current cohort is
74 cases with only cranial malformations, 178 cases with
only spinal phenotypes, and 103 cases with complex
phenotypes in both cranial and spinal regions. Viewing
all cases together, there are 177 with cranial NTDs and
281 with spinal NTDs (Fig. 1).

High throughout targeted sequencing of neural tube
closure (NTC)-related genes

To gain an understanding of the genetic contribution to a
broad set of NTD phenotypes, we undertook a population-
based case-control mutation screening study to reveal po-
tential disease-causative rare variants by sequencing a se-
lected set of 280 genes implicated in NTC from human and
animal studies [1, 5, 6, 30, 40]. These 280 genes encom-
passed more than twenty-one signaling pathways and key
developmental pathways (upplementary Table 1). For these

280 genes we sequenced the coding regions (CDS), splice
junctions, and 2000 bases upstream of the genes for a total
of 438 Mb of the human genome. The CDS length se-
quenced for each pathway is shown in Supplementary
Table 1. We applied criteria in calling cohort-specific vari-
ants by eliminating from further analysis shared rare vari-
ants found in both NTD and control samples. SIFT and
Polyphen2 were used to identify putatively damaging SNVs
[41, 42]. All missense mutations, together with splicing mu-
tations, frameshift mutations or nonsense mutations were
defined as putatively damaging rare variants (PDRVs) in the
present study. By these criteria we identified NTDs case-
specific 791 PDRVs in 213 genes and 387 common PDRVs
in 150 genes only in controls, all PDRVs were
heterozygous.

PDRYVs in the pathways of chromatin modification,
apoptosis, retinoid metabolism and lipid metabolism are
enriched in NTDs

To explore the possible genetic contribution of each sig-
naling pathway to human NTDs, we first separately ana-
lyzed the number of PDRVs in NTDs and controls within
each pathway. The data indicate that the genes which
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function in chromatin modification, apoptosis, retinoid-
related and lipid metabolism harbor significantly more
NTD-specific PDRVs (Fig. 2). Regarding genes that func-
tion in chromatin modification, we found 75 PDRVs in
NTD cases which was significantly more than in controls
(75/355 in NTDs vs. 27/225 in controls; P=0.019; two-
sided Fisher’s exact test) (Fig. 2a). For genes that function
more specifically in chromatin remodeling (ACTL6A,
CECR2, SMARCA4, SMARCCI1 and ATRX) there were 22
PDRVs in 355 NTD cases, which was slightly but signifi-
cantly more than in controls (5/225; P = 0.041, two-sided
Fisher’s exact test).

Defective apoptosis can lead to cranial NTD in mouse
[16]. Here we analyzed 14 genes implicated in the apop-
tosis pathway and found 28 PDRVs in NTD cases, sig-
nificantly enriched relative to controls (28/355 vs. 4/225,
P =0.0023, two-sided Fisher’s exact test) (Fig. 2b). Inter-
estingly, the intrinsic pro-apoptotic genes implicated in
exencephaly in mice TP53 [43], APAF1 [44], CASP9 [45]
and CASP3 [46] harbored 16 PDRVs in human NTD
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cases, considerably increased relative to controls (16/
355 vs. 1/225, P =0.0044, two-sided Fisher’s exact test)
(Fig. 2b). By contrast, we did not find a PDRV in the
anti-apoptotic gene BCLIO in our cohort (Fig. 2b), al-
though its mutant show exencephaly in mice [47].
Retinoic acid is a small lipophilic molecule derived from
vitamin A via the retinoid metabolism pathway and gene
mutations in this pathway cause NTD phenotypes in mice
[48]. As we previously reported [33], in six retinoid metab-
olism genes we found 12 occurrences of PDRVs in NTD
cases versus 0/225 in controls (P = 0.0046, two-sided Fish-
er’s exact test) (Fig. 2c) and PDRVs were predominantly in
the CYP26B1 gene (9/12), which acts to degrade retinoic
acid. In the three genes sequenced in the lipid metabolism
pathway, there were significantly more PDRVs in NTD
cases (36/355 in NTDs vs. 10/225 in controls, P =0.025)
(Fig. 2d). Of note, a frameshift variant in the APOB gene
was found in control (NM_000384: exon26:c.10373delT;
p-M3458fs) but overall the APOB gene harbored more
PDRVs in NTD cases (28/355) versus controls (10/225).
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Fig. 2 Four pathways significantly associated with human neural tube defects. In the present study, PDRVs in genes functioning in four pathways
have been explored being associated with the current NTD cohort, they are (a) chromatin modification; (b) apoptosis; (c) retinoid metabolism
related genes; and (d) lipid metabolism. The occurrences of missense variants are shown as green font; of splicing variants are shown as blue; of
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PDRVs in the LEPR gene were only found in NTD cases
(8/355 vs. 0/225, P = 0.026, Fig. 2d). In total, in the current
NTD cohort, polygenic PDRVs were carried by 137 cases,
while 97 cases were digenic, by contrast, no PDRV in the
targeted genes was found in 48 cases (Fig. 2e). These con-
firm polygenic or digenic genetic features for human
NTDs, however, it is also necessary to extend the target
list in the future.

In summary, evaluation of our current set of 280 genes
and 21 pathways showed that four signaling pathways
were significantly enriched for NTD-specific PDRVs.
Furthermore, PDRVs in genes of these four pathways
were associated with 34% (120/355) of NTD cases. These
data suggest the importance of PDRVs in these pathways
in the pathogenesis of NTDs and highlight these bio-
logical functions as critical for human NTC.

Craniorachischisis is associated with PDRVs in PCP
signaling and new pathways of chromatin modification
and retinoid metabolism

We next asked whether we could discern possible rela-
tionships between more specific NTD phenotypes and
variants in molecular pathways. This was possible as our
present cohort encompasses a range of NTD sub-
phenotypes including cranial, caudal, and complex NTD
as shown in Fig. 1. We started with an analysis of cra-
niorachischisis, the most severe NTD phenotype and
which has been associated with defects in genes within
the PCP pathway in both mice [5] and human [49]. Our
sequencing study encompassed 18 PCP genes, including
the core PCP genes VANGLI1/2, DVL1/2/3, CELSRI and
PRICKLE1/2 [50]. The results showed that there were 69
PDRVs in PCP genes in the total cohort of 355 NTD
cases versus 34 PDRVs in 225 controls, thus not reach-
ing statistical significance when viewed across the range
of NTDs cases (Fig. 3a). However, as expected, PDRVs
in PCP genes were significantly associated with craniora-
chischisis (9/19 in craniorachischisis cases vs. 34 in all
225 controls; P=0.0210; two-sided Fisher’s exact test,
Fig. 3b). Within this smaller cohort of 9 craniorachischi-
sis cases, there were 9 different occurrences of PDRVs in
PCP pathway genes (yellow background in Fig. 3c high-
lights these 9 cases). Thus, our data support previous
findings that the PCP pathway genetically contributes to
human craniorachischisis. It is of note that some cra-
niorachischisis do not carry PDRVs in the set of PCP
pathway genes sequenced, either suggesting the presence
of variants in untranslated regions of the sequenced PCP
genes or in other PCP genes that were not sequenced or
alternative mechanism(s) underlying this pathology. In
support of the latter possibility, we found a relationship
between PDRVs in genes involved in chromatin modifi-
cation and retinoid metabolism that were associated
with the craniorachischisis phenotype (Fig. 3b, pink and
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blue highlight in Fig. 3c). Interestingly, the degradation en-
zyme for retinoic acid encoded by the CYP26B1 gene har-
bors significant number of PDRVs in craniorachischisis
cases (2/19 in craniorachischisis vs. 0/225 in all controls;
P=0.007; Fig. 3b and c). Therefore, our sequencing of
even a limited number of NTD genes reveals new candi-
date genes related to chromatin modification and retinoid
metabolism associated with craniorachischisis. Further-
more, our sequencing uncovered additional genes and
pathways (Fig. 3c) that may play causal roles and are
worthy of consideration in other cases of this most severe
NTD, craniorachischisis.

Cranial NTD phenotypes are associated with PDRVs in
chromatin modification, retinoid and glucose metabolism,
apoptosis and one-carbon metabolism

We next addressed whether particular pathways may
be more closely associated with cranial NTD sub-
phenotypes. Statistical analysis of the 177 NTD cases
that include a cranial phenotype (Fig. 1) indicated
that PDRVs in genes in chromatin modification,
apoptosis and retinoid metabolism were associated
with prevalence of cranial NTD phenotypes with or
without spinal NTD phenotypes (P =0.024; P=0.011
and P=0.0016, respectively; Fig. 4a). Regarding
cranial-only NTD phenotypes, PDRVs were enriched
in genes involved in chromatin modification and ret-
inoid metabolism (P =0.0054 and P =0.0011; Fig. 4b).
In 17 cases affected with only anencephaly (Fig. 4c),
PDRVs were enriched in chromatin modification
genes as well as in glucose metabolism genes, particu-
larly the case D102 carries two different PDRVs in
the INSR gene (INSR: NM_000208: ¢.1882C > G:
p.P628A and ¢.4028G > A:p.R1343Q).

In all 57 encephalocele cases, PDRVs in genes in chro-
matin modification, apoptosis, retinoid metabolism and
one carbon metabolism were found significantly associ-
ated with the phenotype prevalence (Fig. 4d). Interest-
ingly, three pathways were related to encephalocele in
frontal regions (Fig. 4e), whereas for occipital encephalo-
cele the PDRVs were statistically accumulated only in
genes functioning in retinoid metabolism (Fig. 4f),
correlating with a role for retinoid signaling in hindbrain
patterning [51]. In general, it appears that PDRVs in
genes in chromatin modification can contribute to
diverse cranial phenotypes with or without spinal pheno-
types, including anencephaly and encephalocele. In
contrast, PDRVs in genes in retinoid metabolism are
associated with all types of encephalocele, but not anen-
cephaly, at least in our cohort of patients. Finally, PDRVs
in genes in apoptosis and one carbon metabolism are
significantly associated with frontal encephalocele or
encephalocele only (Fig. 4d and e).
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Fig. 3 Planar cell polarity pathways and craniorachischisis. In the present cohort PDRVs occur in multiple NTD phenotypes but are significantly
associated with craniorachischisis (a). The background color of different phenotypes are same as in Fig. 1. Interestingly, except for planar cell
polarity pathway, craniorachischisis phenotype is statistically associated with PDRVs in chromatin modification and retinoid metabolism genes (b),
fisher exact test was used to calculated P value, and numbers in brackets means occurrences of PDRVs in each gene. In (c) we list all 19
craniorachischisis in the present study and the PDRVs we found in these cases. Yellow background means genes in planar cell polarity pathway;
purple background represents genes functioning in chromatin modification; sky blue background represents retinoid metabolism related genes.
In all panels, numbers or gene symbols in green represent missense PDRVs occurred; in blue represent splicing PDRVs; in purple represents
frameshift PDRVs and in red represents nonsense PDRVs

Spina bifida phenotypes are associated with PDRVs in
apoptosis, retinoid and lipid metabolism, and
cytoskeleton genes

Spina bifida remains a common NTD phenotype world-
wide and we enrolled a total of 281 cases with spina
bifida, of which 178 had only spinal NTDs (Fig. 1).
When viewed as the entire cohort of 281 spina bifida
with or without cranial phenotype, there was significant
enrichment for PDRVs in apoptotic pathway genes (23/

281 wvs. 4/225 controls; P=0.0023, two-sided Fisher’s
exact test) and lipid metabolism genes (32/281 vs. 10/
225 controls; P=0.0093, two-sided Fisher’s exact test)
(Fig. 5a). However, when the 178 cases with only spinal
NTDs were considered, the association with lipid metab-
olism genes was not significant. Instead, these 178 cases
were significantly associated with PDRVs in apoptosis
and retinoid metabolism genes (15/178 and 4/178, re-
spectively in spina bifida cases vs. 4/225 and 0/225 in
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Fig. 4 Summary on PDRVs burden genes related functional pathways in cranial NTDs. (@) Summary of PDRVs in all 177 NTDs cases who display
NTDs phenotype in cranial regions with or without spinal regions. (b) Summary in cases who have only cranial NTD phenotypes. (c-f) show
summaries of PDRVs burden genes and their functional pathways in cases affected with only anencephaly (c); only encephalocele (d); only frontal
encephalocele (e); only occipital encephalocele (f). Numbers in brackets means occurrences of PDRVs in each gene, numbers or gene symbols in
green represent missense PDRVs; in blue represent splicing PDRVs; in purple represents frameshift PDRVs. Gene symbols linking with colon
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controls, Fig. 5b). In addition, PDRVs in apoptosis genes
are related to spina bifida aperta and spina bifida cystica
(P =0.0079 and P =0.030, Fig. 5¢c and d). Taken together,
PDRVs in apoptosis genes seem to be highly associated
with cases of spina bifida aperta and spina bifida cystica.

Because we had a large cohort of spina bifida cases
that varied in position of the affected segments as well
as severity, we next evaluated our data within specific
caudal NTD sub-phenotypes. Lumbar sacral spina bifida
is thought to result from failure of primary neurulation
at the caudal end and failure of secondary neurulation
[1]. Our present cohort included 73 cases with only lum-
bar sacral spina bifida and these showed an association

only with lipid metabolism genes (Fig. 6a). PDRVs in the
APOB gene occurred in a significant number of lumbar
sacral spina bifida cases (10/73 vs. 10/225 controls, P =
0.018, two-sided Fisher’s exact test), although Apob
knockout mice exhibit only exencephaly [52]. We then
separated the lumbar sacral spina bifida cases into spina
bifida aperta, spina bifida cystica, and spina bifida
occulta. Lumbar sacral spina bifida aperta is the most
widespread NTD phenotype in human. In 50 cases, we
found PDRVs in genes functioning in cytoskeleton and
lipid metabolism (8 PDRVs in the APOB gene) were sig-
nificantly enriched (P=0.044 and 0.012, respectively;
Fig. 6b). The regulation of the actin cytoskeleton is
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Fig. 5 Summary on PDRVs burden genes related functional pathways in spinal NTDs. Summary in cases affected with spinal NTD phenotype
whatever who are with or without cranial NTD (a), or affected with only spinal NTD phenotypes (b), or with only spina bifida aperta (c), or with
spina bifida cystica (d). Numbers in brackets means occurrences of PDRVs in each gene, numbers or gene symbols in green represent missense
PDRVs; in blue represent splicing PDRVs; in purple represents frameshift PDRVs. Gene symbols linking with colon represents two concurrent
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Fig. 6 Summary on PDRVs burden genes related functional pathways in lumbosacral spina bifida. Summary in cases affected with only lumbar
sacral spina bifida (a), or affected with only spinal NTD phenotypes (b), or with only spina bifida aperta (c), or with spina bifida cystica (d).
Numbers in brackets means occurrences of PDRVs in each gene, numbers or gene symbols in green represent missense PDRVs; in blue
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critical in murine NTC [5] and we found PDRVs in
many genes that control the actin cytoskeleton including
the SHROOM family of proteins. Our data identified a
frameshift variant in the SHROOM3 gene in case D183
(NM_020859:c.1782delC:p.N594fs; indicated in orange
font in Fig. 6b) and another case (TJ-QS39) which carries
a SHROOM4 NM_020717:c.2011G > C: p.A671P variant
and a MARCKSLI:NM_023009:c.226G > A: p.A76T vari-
ant (Fig. 6b).

In the 10 lumbar sacral spina bifida cystica cases, we
found PDRVs in 3 apoptotic genes (P = 0.0038; Fig. 6c).
For the 13 lumbar sacral spina bifida occulta cases,
PDRVs in genes in lipid metabolism were weakly corre-
lated (P =0.041, Fig. 6d). Although the number of NTD
sub-phenotype cases is too few to draw strong infer-
ences, it is interesting that lumbar sacral spina bifida
occulta was related to PDVRs in LEPR gene (2/13 vs. 0/
225, P=0.0037), whereas PDRVs in LEPR were not asso-
ciated with lumbar sacral spina bifida aperta.

Within our enrolled cases there were a few other spinal
sub-phenotypes encompassing other segments. In eleven
cases affected by thoracic lumbar spina bifida aperta there
were 3 PDRVs in the lipid metabolism genes LEPR and
APOB (P=0.029; Fig. S1A). Interestingly, the case D126
carried two APOB PDRVs (APOB:NM_000384:c.11230C >
G: p.L3744V and ¢.7777A > G: p.12593V). Within our two
cases of thoracic spina bifida aperta-only, one case carried
two PDRVs in genes involved in nuclear pore complex
function (NUP98:NM_139132:c.4837C > T: p.R1613C and
¢.5026C > A: p.H1676N) (Fig. S1B). Our five cases of thor-
acic lumbar spina bifida occulta harbored PDRVs in genes
in chromatin modification (4/5 vs. 27/225 controls) and
neural development (3/5 vs. 12/225 controls; P =0.013 and
P=0.008, respectively; Fig. S1C). Three cases of lumbar
spina bifida cystica revealed one PDRV in the retinoid me-
tabolism gene CYP26B1 (1/3 vs. 0/225, P = 0.017; Fig. S1D).
In the one case of thoracic spina bifida cystica there was a
PDRYV in apoptosis gene CASP9 (P = 0.042; Fig. S1E).

Complex NTDs affecting both cranial and spinal regions are
associated with PDRVs in a range of functional pathways

Our present cohort also encompasses complex pheno-
types which affect both cranial and spinal regions. In the
40 cases with anencephaly and occipital cervical spina
bifida aperta, the sequencing data revealed 7 PDRVs in
lipid metabolism genes (P =0.011, Fig. 7a). This included
the case D98 which carries two heterozygous APOB mis-
sense variants (APOB: NM_000384 ¢.11230C>G:
p.L3744V and ¢.7777A > G: p.I12593V)(Fig. 7a). Interest-
ingly, we had one case with anencephaly and thoracic
lumbar spina bifida aperta (the neural tube was closed in
cervical region), who carried two missense mutations in
the MAP3K4 gene involved in MAPK signaling
(MAP3K4: NM_005922: ¢.877G>A: p.D293N and
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¢.2711C > G: p.T904S)(Fig. 7b). In mouse Map3kd ex-
presses along the edges of neural folds and the mutant
mice display exencephaly from forebrain to hindbrain,
curly tail and lower spina bifida phenotypes or combin-
ation of exencephaly and spina bifida/curly tail [53, 54].
In two cases with anencephaly and spina bifida cystica,
missense mutations were found In two Notch signaling
pathway genes; one in the E3 ubiquitin-protein ligase
MIB2, which positively regulates the Delta-mediated
Notch signaling, and the other in JAGI, a ligand for
multiple Notch receptors (2/2 vs. 16/225 controls, P =
0.028; Fig. 7c). In 27 cases of encephalocele and spina
bifida there were 3 PDRVs in apoptotic genes (P = 0.035;
Fig. 7d). In an unique case with frontal occipital ence-
phalocele and occipital cervical spina bifida aperta, there
was a PDRYV in the pro-apoptotic gene APAFI (APAFI:
NM_181868:c.1004C > G: p.P335R; P =0.042; Fig. 7e).
Notably, in 2 cases of frontal encephalocele and occipital
cervical thoracic spina bifida apertas, there were 4
PDRVs in four genes functioning in ECM and adhesion
(4/2 vs. 46/225 controls; P = 0.010; Fig. 7f). This included
concurrent PDRVs in integrin alpha6 encoded gene
ITGA6 and a basement membrane protein heparin sul-
fate proteoglycan 2 encoded gene HSPG2 in one individ-
ual; and concurrent PDRVs in two cell adhesion genes
NCAM1 and CDON in another individual. This suggests
a possible synergistic effect of ECM and adhesion on the
closure events disrupted in cases of frontal encephalocele
and occipital cervical thoracic spina bifida aperta. In 5
cases of frontal encephalocele and occipital cervical spina
bifida aperta, we observed 3 PDRVs in the cytoskeleton
genes SHROOM?2, SHROOM3, and VCL encoding VIN-
CULLIN (P =0.040; Fig. 7g). There was a relationship to
PDRVs in neural development genes with the complex
phenotypes of occipital encephalocele and spina bifida
represented by occipital encephalocele and holorachischi-
sis (spina bifida aperta in all spinal regions, 3 PDRVs in 7
cases vs. 12/225) and occipital encephalocele and occipital,
cervical and thoracic spina bifida aperta (2/3 cases vs. 12/
225) (P=0.016 and P =0.028, respectively; Fig. 7h and i).
TRPMS6, encodes a channel protein crucial for magnesium
homeostasis and mutations in Trpm6 in mice result in
exencephaly and spina bifida occulta [55]. We found 2
PDRVs in TRPM6 in two cases of occipital encephalocele
and occipital, cervical and thoracic spina bifida aperta and
1 PDRV in one case of occipital encephalocele and holora-
chischisis (P =0.0004 and P = 0.0343; respectively, Fig. 7h
and i).

Discussion

The association of craniorachischisis and PCP gene
variants should be highlighted in human NTD genetics
[34, 49, 50]. In the present study, our data indicated that
in addition to PCP genes, variants in retinoic acid related
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gene CYP26BI and chromatin modification genes are
associated with craniorachischisis prevalence. This sug-
gests that genetic variants in PCP genes are not unique
causative factors for craniorachischisis in human and re-
veals new genes for consideration for this severe NTD.
Indeed, mouse embryos deficient for glycine decarb-
oxylase (Gldc) exhibit craniorachischisis as well [22].
The CYP26 proteins along with retinaldehyde dehydro-
genase control the regional levels of retinoic acid.
Cyp26b1, together with Cyp26al and Cyp26c¢l, corrects
Nodal expression during gastrulation, when retinalde-
hyde dehydrogenase is not expressed [56]; mice lacking
all three CYP26 genes manifest duplication of neural
tube which is more pronounced than Cyp26a-/c-
double mutant mice [56], emphasizing the crucial role
of Cyp26bl. Chromatin modification genes are neces-
sary for NTC, although mouse embryos carrying muta-
tions in these genes mainly exhibit exencephaly [1].

Nonetheless, multiple chromatin modification genes
such as Dnmt3b and Cecr2 show expression patterns
distributed at the leading edge of the neural folds along
the rostrocaudal axis during neurulation [57, 58]. Kat2a
is also expressed widely along the cranial and spinal
neural tube [59]. Jarid2, a regulator of histone methyl-
transferases complex, is expressed at the midbrain-
hindbrain boundary and distributed in spinal regions as
well [60]. These suggest that these molecules poten-
tially play roles in both spinal and cranial regions.
Moreover, in our present results, all variants in chro-
matin modification genes and CYP26BI gene are con-
current with other variants in neural tube-related genes
(Fig. 3c), so we hypothesize that the craniorachischisis
phenotype is also resulted from the synergistic effect of
NTC-related polygenic functional variants.

Rare variants in chromatin modification genes, apop-
tosis genes and retinoid metabolism genes significantly
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contribute to cranial NTD phenotypes, including anen-
cephaly and encephalocele (Fig. 4), further emphasizing
the importance of these signaling pathways in cranial
neurulation. The morphology of the elevating neural
folds differs between cranial and spinal regions in mam-
mals. In the mouse embryonic midbrain, the neural folds
are initially bi-convex with their tips orientated away
from the midline. Then, dorsolateral bending occurs,
generating bi-concave neural folds and orienting the tips
towards the midline for fusion [50, 61]. In addition, the
emigration of cranial neural crest may enable dorsolat-
eral bending [4]. In contrast, spinal region does not ex-
hibit a bi-convex elevation phase and the neural folds
remain straight except for focal bending sites at the mid-
line and dorsolaterally; and neural crest emigration in
the spinal region does not begin until several hours after
NTC is complete [62]. In addition, during cranial neuru-
lation, a functional actin cytoskeleton, emigration of the
cranial neural crest, spatio-temporally regulated apop-
tosis, and a balance between cell proliferation and the
onset of neuronal differentiation are all required for nor-
mal dorsolateral bending [50]. Moreover, closure of the
cranial neural tube is essential not only for maintenance
of brain development but also for initial formation of
much of the skull, with contributions from both cranial
mesenchyme and cranial neural crest [4, 63]. Coordinate
regulation of transcriptional networks by epigenetic reg-
ulators is absolutely crucial for proper cranial NTC [5].

In our present NTD cohort, variants in one carbon
metabolism are significantly associated with encephalo-
cele, in particular frontal encephalocele (Fig. 4d and e).
A previous study of 239 newborns with spina bifida and
241 non-malformed controls reported a Hispanic genetic
risk profile pointing to alterations in genes functioning
in purine biosynthesis, whereas that in non-Hispanic
whites implicated in homocysteine metabolism [29]. In
glycine cleavage system genes, rare variants are associ-
ated with multiple phenotypes including spina bifida and
anencephaly [22, 64]. Therefore, except for a possible
causation of different ethnicities, association of one
carbon metabolism to NTD subphenotypes is still to be
determined in a larger number of populations.

Variants in the lipid metabolism genes APOB and
LEPR appear to contribute to lumbar sacral spina bifida
in the present study (Fig. 6). NTC in lumbar sacral re-
gions is attributed to secondary neurulation. Therefore,
our data provides clues that lipid metabolism is essential
for this process in human. APOB encoded apolipopro-
teins B is a major structural component of very low
density lipoproteins, intermediate density lipoprotein,
low density lipoprotein, chylomicrons and lipoproteins.
In Apob knockout mice or mice carrying a dysfunctional
truncated Apob protein, homozygous embryos at gesta-
tional day 9.5 were either runted or appeared to be
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nonviable, and the few viable homozygous embryos at
gestational day 10.5 appeared to be exencephalic. More-
over, even heterozygous mice had significant reductions
in total plasma cholesterol and HDL cholesterol com-
pared with wildtype mice [52, 65, 66]. Thus, APOB can
have widespread effects and heterozygous allelic variants
can reduce biological function. Similar to our results,
LEPR rs1137100 G allele showed a significant increase
in the risk of an NTD-affected offspring when inherited
from the mother (2.43 fold), and an increased risk for
lower spina bifida aperta (Lumbar 1 and lower, 3.20 fold)
[67]. A study in Ireland of 520 spina bifida cases and
their families and 994 controls found over-transmission
of the LEPR rs1805134 minor C allele associated with
spina bifida (relative risk of 1.5 fold) [68]. Taken to-
gether with our data, there is a significant association of
genetic variants in lipid metabolism genes and human
lumbar sacral spina bifida aperta.

Variants in apoptosis genes are associated with cranial
and spinal NTDs, particularly in the frontal encephalocele,
spina bifida aperta and spina bifida cystica (Figs. 4 and 5).
Variants in both pro-apoptotic (APAFI, TP53, CASP3 and
CASP9 etc.) and anti-apoptotic genes (NFKBI, IKBKB etc.)
were found in the present study, consistent with the idea
that too little or too much cell death can disrupt the fine
regulation of NTC. Indeed, mice carrying mutations in
apoptosis genes exhibit exencephaly and spina bifida [1, 69]
associated with excess neural cells [69]. On the other hand,
excessive apoptosis in the lumbar sacral neuroepithelium
has been observed with retinoic acid-induced spina bifida
[70]. In human NTDs cases, more apoptotic cells were ob-
served in the central nervous tissue [71]. Higher levels of
p53 were observed in anencephaly cases [71]. Cleaved cas-
pase 3 levels were elevated in encephalocele cases and
cleaved caspase 8 levels were higher in spina bifida cases
relative to controls [71]. Even under harsh environment,
failure of NTC is probably due to p53 stabilization and ex-
cessive apoptosis [72]. Altogether, abnormal apoptosis
might be a common causal factor for cranial and spinal
NTDs and abnormal apoptosis might contribute to a wide
variety of human NTDs.

Adhesion is key process for fusion of the neural folds
and genetic disturbance that alters the adhesion of neural
folds should prevent NTC [10]. In two frontal encephalo-
cele and occipital cervical thoracic spina bifida aperta
cases, two pairs of rare variants in ECM and adhesion
genes were found (Fig. 7f). Integrin ltga6/Itga3 double
mutant mice or Hspg2 mutant embryos exhibit exence-
phaly [73, 74]. We observed PDRVs in both ITGA6 and
HSPG2 genes in one case. In a study in American Cauca-
sian simplex lumbar sacral spina bifida aperta families, a
nucleotide polymorphism in NCAMI gene may influence
NTD risk [75]. Similarly, we found variants in NCAM1I
and CDON adhesion genes in some cases.
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Conclusion

Through sequencing NTC-related genes we explored as-
sociations of PDRVs in signaling pathways to subpheno-
types of human NTDs. Our studies add a significant
body of data relative to the genetic causes of human
NTDs. Our identification of rare variants in a wide range
of genes in a relatively large cohort of NTD cases and
controls provides robust insight into plausible critical
genetic factors that regulate human neurulation. More-
over, our studies contribute new insight into NTD
phenotype-genotype relationships in human. These re-
sults lay a foundation for a more detailed understanding
of human NTC and how variations in genetic factors
may lead to NTDs.
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