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Abstract

Background: Neural circuits can spontaneously generate complex spatiotemporal firing patterns during
development. This spontaneous activity is thought to help guide development of the nervous system. In this study,
we had two aims. First, to characterise the changes in spontaneous activity in cultures of developing networks of
either hippocampal or cortical neurons dissociated from mouse. Second, to assess whether there are any functional
differences in the patterns of activity in hippocampal and cortical networks.

Results: We used multielectrode arrays to record the development of spontaneous activity in cultured networks of
either hippocampal or cortical neurons every 2 or 3 days for the first month after plating. Within a few days of
culturing, networks exhibited spontaneous activity. This activity strengthened and then stabilised typically around 21
days in vitro. We quantified the activity patterns in hippocampal and cortical networks using 11 features. Three out of
11 features showed striking differences in activity between hippocampal and cortical networks: (1) interburst intervals
are less variable in spike trains from hippocampal cultures; (2) hippocampal networks have higher correlations and (3)
hippocampal networks generate more robust theta-bursting patterns. Machine-learning techniques confirmed that
these differences in patterning are sufficient to classify recordings reliably at any given age as either hippocampal or
cortical networks.

Conclusions: Although cultured networks of hippocampal and cortical networks both generate spontaneous
activity that changes over time, at any given time we can reliably detect differences in the activity patterns. We
anticipate that this quantitative framework could have applications in many areas, including neurotoxicity testing and
for characterising the phenotype of different mutant mice. All code and data relating to this report are freely available
for others to use.

Keywords: Multielectrode array, Spontaneous activity, Cortex, Hippocampus, Principal component analysis, Support
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Background
During development, many parts of the nervous sys-
tem generate patterns of spontaneous activity. These pat-
terns of activity are thought to be instructive in the
assembly of neural connectivity, for example by driv-
ing activity-dependent mechanisms [1]. To date, most
recordings of spontaneous activity have been in vitro,
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although spontaneous activity in vivo has also been
reported in hippocampus and in several cortical areas
[2-6]. In vitro recordings are typically made with multi-
electrode arrays (MEAs), which contain at least 60 elec-
trodes. These recordings allow us to assess activity at
a range of levels from the single unit to the network.
Beyond their relevance for understanding how activity
might guide development of the nervous system, spon-
taneous activity recordings have also been used as an
assay for network performance in applied settings, like
neurotoxicity screening [7].
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In recent years there has been significant interest in
measuring the developmental patterns of spontaneous
activity in networks cultured from neurons in control and
experimental conditions [7-11]. Although many proper-
ties of spontaneous activity have been reported, we do not
yet have a systematic sense of how these features change
across development, or which features of neural activity
are useful for describing the observed patterns of activity.
To address both these questions, we have cultured two

types of network on MEAs and recorded their activity
every 2 to 3 days up to around 1 month post-plating
of neurons onto the array. In the first type of network,
we cultured hippocampal neurons taken from embry-
onic mice. The second type of network was created using
exactly the same protocol except with neurons dissected
from cortex. Recordings of spontaneous activity from
both types of network were quantified using 11 different
features at the level of individual electrodes, pairs of elec-
trodes or the entire array. We found that hippocampal
networks tend to generate more regular bursting activity,
including theta bursts, and more correlated activity than
the corresponding cortical networks at the same age.

Results
Development of spontaneous activity
Within 7 days of culturing neurons on MEAs, sponta-
neous activity can be reliably recorded (Figure 1) from
both hippocampal and cortical networks. As development
progresses, we find that the firing rate increases, and that
the frequency of bursting increases. To quantify these dif-
ferences, we have used a range of measures (Figure 2) to
assess the activity at a single-electrode level, pairwise and
at the level of the entire network. All of these measures are
defined in the methods.

Overall firing rates
During development, there are slight, statistically
significant differences in firing rates, with median firing

rates being slightly higher for hippocampal networks,
but overall there are no key differences at maturity
(Figure 3A).

Bursting properties
Neurons typically fire in bursts, and are thought to be a
reliable unit of neuronal information for functions such as
coincidence detection and synaptic modification [12]. We
find that bursts emerge around 7DIV (days in vitro) and
strengthen until about 14DIV after which the bursting
properties tend to stabilise. Among the bursting proper-
ties that we have measured, two factors seem to differ-
entiate hippocampal and cortical networks. First, there
is a higher fraction of spikes occurring within bursts for
hippocampal networks (Figure 3E), although the differ-
ence is no longer significant by 28DIV. Second, the spike
trains from hippocampal networks seem to be more reg-
ular, as indicated by the lower coefficient of variation for
interburst intervals (CV of IBIs) (Figure 3F). The other
burst-based measures that we calculated, namely within-
burst firing rate (Figure 3B), burst rate (Figure 3C) and
duration (Figure 3D) showweaker differences between the
two types of network.

Network activity
The previous measures analysed spiking data indepen-
dently on each electrode. As a first approximation to
assessing network activity, we used the concept of network
spikes [13] to define the degree to which activity is coor-
dinated across the entire array. At any time t we count the
number of active electrodes; when this count exceeds a
threshold, we say that a network spike has occurred. We
measured three properties of these network spikes: their
rate (per minute), their duration and their peak ampli-
tude. Hippocampal networks tend to have more network
spikes than cortical networks (Figure 3G) and the net-
work spikes involve more electrodes across development
(Figure 3H). The hippocampal network spikes tend to last
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Figure 1 Examples of spontaneous activity in developing cultures. Top row: Hippocampal (HPC) cultures. Bottom row: Cortical (CTX) cultures.
Each column represents one day in vitro (DIV). Within each raster plot, one row represents the spike train from one electrode; six (out of typically 59)
electrodes are shown. Scale bar for all rasters is 10 s. CTX, cortex; DIV, days in vitro; HPC, hippocampus.
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Figure 2 Examples of features calculated for each recording. The
hippocampal recording from 14DIV in Figure 1 was used as an
example for this figure. (A)Mean network spike. (B) Pairwise
correlation calculated using the spike time tiling coefficient. As there
is weak dependence on distance, we take the mean (grey solid line).
(C) Detection of theta bursting on an electrode with a firing rate close
to the median activity on the array. DIV, days in vitro.

slightly longer, although this is not consistent across devel-
opment (Figure 3I). Overall, this suggests that network
activity tends to be stronger and more coordinated in
hippocampal than cortical networks.

Pairwise correlations
As a further method to detect coincident activity on
electrodes, we computed correlation coefficients for all
possible pairs of electrodes on the array. For any pair
of spike trains, we computed the spike time tiling coef-
ficient, as this measure is particularly well suited for
relatively sparse spike trains [14]. For N (typically 59)
electrodes on the array we compute N(N − 1)/2 cor-
relation coefficients (i.e. ignoring autocorrelations) and
plot them as a function of the distance separating the
two electrodes (Figure 2B). This technique has been used
in studies of spontaneous activity in developing retina,

and often reveals that correlations are dependent on dis-
tance, typically following a decaying-exponential profile
[15]. However, we found that there is little, if any, distance
dependence upon the correlation coefficients (Figure 2B),
similar to that reported before [16]. We therefore decided
to compute the average of all pairwise correlations.
Across all developmental ages, we find that the mean

correlation is higher in hippocampal than in cortical net-
works (Figure 3J). From 7DIV to 14DIV, we see that the
mean correlation becomes reliably stronger; after 14DIV
the correlations tend to stabilise.

Presence of theta bursting
The theta rhythm is a prominent 4 to 10 Hz oscilla-
tion measured in the hippocampus, and is thought to be
involved in a range of neural functions [17]. We decided
to examine whether our networks exhibited such oscil-
lations by checking for peaks in the log interspike inter-
val (ISI) histogram in the range 0.1 to 0.25 s. Figure 2B
shows an example of one electrode (recording from a
14DIV hippocampal network) that exhibited theta burst-
ing. Our approach was to measure the fraction of elec-
trodes exhibiting theta bursting. Perhaps themost striking
feature that discriminates hippocampal from cortical net-
works is the presence of theta bursting in hippocampal
networks. Although only about 10% of electrodes in hip-
pocampal networks are classified as theta bursting at
7DIV, after 11DIV theta bursting is found on 50% to 75%
of electrodes (Figure 3K). By contrast, most electrodes in
cortical networks do not detect theta bursting, except at
25DIV.

Discrimination of hippocampal and cortical networks
Each of the 11 features documented in Figure 3 shows that
there are significant differences between hippocampal and
cortical networks. However, given that the distributions of
values can overlap and yet still be statistically significant
(e.g. firing rate at 21DIV; Figure 3A), we cannot use indi-
vidual features to reliably discriminate between the two
types of network. We therefore used machine-learning
techniques to address two related questions:

1. Out of the 11 features, which are the most important
for discriminating hippocampal versus cortical
networks?

2. Given a recording of a network at a given age, is it
possible to predict the identity (hippocampal or
cortical) of the network?

We therefore translated each 15-minute recording into
an 11-dimensional vector, with element i of the vector
storing the value of feature i measured from the record-
ing. This vector is described below as a feature vector of
the recording.
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Figure 3 Characterisation of spontaneous activity in hippocampal and cortical networks. (A–K) Values of one feature (named on the y-axis)
as a function of age. Box plots show the median and interquartile range, with whiskers extending out to the most extreme values within 1.5 times
the interquartile range. Individual points outside this range are regarded as outliers and drawn as points; in a few cases these outliers are not drawn
to keep the y-axis within a meaningful range. Underneath each age, stars denote significant difference of median values for cortical and
hippocampal networks at either 0.05 (*) or 0.01 (**) level (Mann–Whitney test, with P values corrected for multiple comparisons with false discovery
rate method). (L) Number of arrays analysed at each age. CTX, cortex; CV, coefficient of variation; DIV, days in vitro; HPC, hippocampus; IBI, interburst
interval; w/in, within.

Principal component analysis
If there is a consistent difference in the properties of
hippocampal and cortical recordings, we would hope that
the corresponding feature vectors cluster into two dis-
tinct regions. However, as these feature vectors are 11-
dimensional, we must first reduce their dimensionality
to visualise them. Many such dimensionality-reduction
techniques are available; we chose to use the best-known
method, principal component analysis. Figure 4 shows

the projection of the feature vectors at three different
ages down into two-dimensional space. At 7DIV, there
is significant overlap between the hippocampal and cor-
tical recordings, which might suggest that it is hard to
discriminate between the two types of recordings; how-
ever, at 14 and 21DIV, the recordings from the same
cell type cluster and there is significant separation of the
hippocampal and cortical recordings. The graphs under-
neath each scatter plot show the cumulative percentage of
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Figure 4 Principal component analysis of hippocampal and cortical feature vectors. Each column represents a principal component analysis
of the 11-dimensional feature vectors of all recordings at a given age (days in vitro). In the scatter plot, each point represents one recording projected
down into the two dimensions that account for maximal variance and is coloured according to its cell type. Each graph shows the cumulative
fraction of variance accounted for by the principal components. CTX, cortex; DIV, days in vitro; HPC, hippocampus; PC, principal component.

variance accounted for by the components. In each case,
the first two principal components account for at least
60% of the variance.

Classification of recordings
The principal component analysis suggests that, especially
at the later ages, the feature vectors contain sufficient
signal to discriminate between hippocampal and cortical
networks. However, given the overlap between clusters,
we next used classification techniques to quantify the
degree to which the two classes of recording can be sepa-
rated.We used two classificationmethods, detailed below.
In both methods, two-thirds of the feature vectors at a
given age are used to train a classifier to discriminate
between the two types of recording. The remaining one-
third of the feature vectors are then used as a test set to
evaluate how well the classifier performs on data unseen
during training.
We first used classification trees [18]. We built ten

classifiers, one per age studied, to test whether the record-
ings could be grouped into cortical or hippocampal net-
works. We found that for any given age, the prediction
accuracy of the trees was high – usually over 75% cor-
rect, depending on the age of the recording. (Performance
would be 50% if there were no information to distinguish
the two types of recording.) Once these trees had been
built, we were able to interrogate them to find out which

features were dominant in driving the classification of the
network. At different ages, unsurprisingly, different fea-
tures were dominant, but an overall trend clearly emerged
when we averaged across developmental ages. Table 1 lists
the features in decreasing order of their importance, along
with their relative score (column 2).
Out of the 11 features, three stood out. The most

important was CV of IBI; this is a measure of fir-
ing regularity, which tends to be higher in hippocam-
pal networks. Second, theta bursting is a key indicator
(once it emerges at DIV 11) of hippocampal networks.
Third, mean correlation is one of the top three features
roughly half the time, and again is higher in hippocampal
networks.
We chose classification trees as our first classification

method primarily because of their simplicity (there are no
free parameters) and ability to assess easily which features
are driving the classification. Although their classification
performance was good, we compared their performance
against another common machine-learning technique,
namely support vector machines (SVMs). We found that
the SVM classifiers tended to result in slightly higher clas-
sification accuracy than the classification trees; e.g. when
all 11 features were used, performance was 75% to 97%
across ages (bottom row of Table 1).
Finally, given that our classifier trees provide us with a

natural ordering of the importance of features, we asked
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Table 1 Classifier performance at discriminating cortical from hippocampal cultures

Percentage correct at given age (DIV)

Feature Score 7 10 11 14 17 18 21 24 25 28

CV of IBI 1.00 64 85 88 89 84 71 61 72 73 60

Theta burst 0.84 64 82 96 88 91 89 84 86 74 63

Mean correlation 0.50 67 89 96 91 86 94 89 84 75 75

Burst duration 0.33 72 86 97 91 92 90 89 82 77 83

Burst rate 0.32 78 84 97 92 90 95 89 91 74 78

% of spikes in bursts 0.25 82 86 92 94 92 94 89 87 77 79

Firing rate 0.21 83 84 94 94 90 94 92 89 74 78

NS peak 0.19 83 86 91 95 91 96 91 88 76 79

NS duration 0.19 83 89 90 92 89 93 93 86 72 78

Within-burst firing rate 0.16 83 89 96 93 92 96 93 87 77 79

NS rate 0.11 83 88 92 92 90 97 93 85 76 75

Features are listed in decreasing order of importance (score; column 2) normalised to the top score. The following numbers in each row i = 1, . . ., 11 are the mean
percentage of correct classifications at each age using the top i features. CV, coefficient of variation; DIV, days in vitro; IBI, interburst interval; NS, network spike.

how performance varied as we reduced the number of
features that each recording is represented by. We found
that performance remained high even as the number of
features was gradually reduced (moving up through the
rows of Table 1). It is clear, however, that multiple fea-
tures are required for good classification; when only the
single most important feature is used (top row of Table 1),
performance was only just above chance at some ages.
However, with only three or four features, we obtained
good performance across all ages.
In conclusion, the results from the classifiers tell us

that three features of network activity (CV of IBI, theta
bursting and mean correlation) are strong predictors of
whether a recording is from a hippocampal or a cortical
network.

Discussion
We have found that cultured networks of either
hippocampal or cortical neurons generate spontaneous
activity. These patterns of activity change during develop-
ment and already by 7DIV significant differences in their
activity patterns begin to emerge. We have developed a
quantitative framework for examining these activity pat-
terns. By calculating 11 features of activity patterns, we
can represent each recording of spontaneous activity as a
point in (11-dimensional) feature space. When we exam-
ine recordings from any one given developmental age, we
find that recordings from the same neuronal type (corti-
cal or hippocampal) cluster in this feature space such that
we can reliably discriminate between hippocampal and
cortical networks.
Furthermore, out of the 11 features, we find that three

are critically important for this classification in feature
space. First, the CV of IBI was most important on average

in driving the classification. Hippocampal spike trains
tend to fire in bursts that are more regularly spaced
than spike trains from cortical neurons. Second, after
about 11DIV, most electrodes in hippocampal record-
ings detect theta bursting, compared to a minority in
cortical recordings. Third, the mean correlation between
pairs of electrodes tends to be higher in hippocampal
networks. These three measures are all relatively simple,
and measure activity on either a single-electrode level or
from pairs of electrodes. By contrast, although significant
differences were found in the network spike measures,
most importantly, the peak of network spikes (Figure 3F),
these measures were not deemed to be critical in
classification.
We have deliberately chosen simple features to char-

acterise spiking activity to see if they suffice to discrim-
inate between cortical and hippocampal networks. It is
entirely likely that other more complicated measures of
activity, particularly at the network level, may also reveal
clear differences between these two types of network [10].
For example, network connectivity measures have been
used to explore differences in spontaneous activity pat-
terns between mature hippocampal and cortical networks
in a range of frequency bands [19]. However, the sim-
ple measures we have chosen here suffice to differentiate
the two types of network reliably. Likewise, even higher
classification performance may be possible with more
complex machine-learning techniques. However, our pri-
mary interest was to see whether in principle the feature
space can be reliably separated with standard approaches
[18]. Similar machine-learning methods are not yet rou-
tinely used in analysing spontaneous activity, although see
[20] for a recent example showing how single-cell activ-
ity could be classified as either in vivo or in vitro. Finally,
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with the advent of a new generation of higher density
MEAs containing up to 4,096 electrodes [21], it is likely
that there are much richer patterns of activity than we
describe here.
We believe that our framework lends itself nicely to

many applications, for example in neurotoxicity testing
where spontaneous activity from a network is recorded
whilst it is exposed to a particular compound [7]. By
building up a representative feature space of recordings
from compounds known to be either toxic or safe, our
approach can be used to predict the toxicity of novel
compounds. This idea builds upon earlier work where
mean profiles of activity in each condition were used
as simple classifiers [22]. More recently, SVMs were
used for toxicity prediction [23]. We imagine that our
approach could also be used to detect the impact of
particular genetic mutations, given earlier work suggest-
ing that there may be significant differences in network
activity [24].

Limitations and future work
Our current work describes key quantitative differences in
cortical and hippocampal spontaneous activity, but as yet
we cannot explain what mechanisms might underlie these
differences. One simple explanation might be that the
two networks develop at different rates, and so compar-
ing networks at the same age (measured as days in vitro)
might be inappropriate. We also do not yet know whether
the two types of network have different cellular compo-
sitions, such as the fraction of inhibitory interneurons
or glia; even different fractions of GABAA and GABAB
mediated inhibition can significantly regulate network
states [25]. Alternatively, these differences in activity pat-
terns could be driven by molecular differences in individ-
ual neurons and synapses, or by differences in network
connectivity [10].
One potential concern about our current findings is that

neuronal activity in vitro may provide little insight about
neuronal activity in vivo. It is possible that other in vitro
methods, such as brain slices, might produce more real-
istic activity patterns of spontaneous activity [26]. Recent
machine-learning approaches have suggested, however,
that cultured neurons generate spontaneous activity pat-
terns more similar to in vivo activity than activity from
organotypic slices [20]. However, we make no strong
claims about whether our recordings from networks of
cultured neurons can tell us about in vivo activity pat-
terns; we believe that both cultured networks and slice
preparations are only simple approximations to in vivo
networks. Furthermore we believe the utility of in vitro
approaches is that it we can readily study network proper-
ties under different environmental, genetic or pharmaco-
logical conditions.

Conclusions
We report key differences in the developmental spon-
taneous activity patterns of cultured networks of hip-
pocampal and cortical neurons. We have proposed a
quantitative framework for evaluating these patterns. Our
database of recordings and computer programs are all
freely available for others to build upon. Future work
in this area could be to dissect the cellular or network
mechanisms driving the differences in network activity.
For example, the differences between the cortical and
hippocampus cultures could reflect molecular differences
in cells or synapse or cellular differences in the pop-
ulations of cells. Alternatively, differences in functional
connectivity might partially account for these results [10].
Dissecting these differences will require a detailed under-
standing of the diversity of cell types defined by single-
cell transcriptomes in these brain regions, which is still
lacking.

Methods
Primary neuronal culture
Primary cultures of dissociated hippocampal and cortical
neurons were prepared from mice at embryonic day (E)
17 to 18. Hippocampi and cortices were dissected from
E17.5 mouse embryos (two to four, pooled) and trans-
ferred to papain (10 units/mL, Worthington, Lakewood,
NJ, USA) for 22min at 37°C. Cells were manually dis-
persed in Dulbecco’s modified Eagle’s medium containing
10% v/v foetal bovine serum and centrifuged twice at 400 g
for 3.5min. The final pellet was resuspended in Neu-
robasal/B27 supplemented with 0.5mM Gln (Invitrogen,
Paisley, UK), and dissociated cells (2 × 105 per dish)
were seeded in the centre of poly-D-lysine/laminin-
coated MEAs (60MEA200/30-Ti, Multi Channel Systems,
Reutlingen, Germany) containing 600 μl full Neurobasal
medium. Zero-evaporation lids [27] were fitted and the
MEAs housed in tissue culture incubators maintained
humidified at 37°C and 5%CO2/95% air. Twenty-four
hours post-plating, sample MEAs were placed on an
inverted microscope with a heated stage (Axiovert 200;
Zeiss, Cambridge, UK) and photographed through a 32×
phase objective at five different fields of view. These
images were then analysed with CellProfiler [28] to quan-
tify the neuronal density over the electrode array, giving
an average value of 1,500 cells/mm2.
At 3 to 4 days in vitro, cultures were fed by replacing

200 μl medium with pre-warmed fresh full Neurobasal
medium. Cultures were subsequently fed using the same
method after each recording, equating to a one-third
medium change twice per week.
All procedures were performed in accordance with

the United Kingdom Animals (Scientific Procedures) Act
1986. The mouse line used in this study was C57BL/6-
Tyrc-Brd (C57; albino C57BL/6).
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Multielectrode array recording
MEAs and all data acquisition hardware and software
were fromMultiChannel Systems (Reutlingen, Germany).
Pairs of MEAs were interfaced with duplex 60 chan-
nel amplifiers and 15-minute recordings of spontaneous
action potentials were made twice per week during the
4 weeks following plating. MEAs were heated and kept
under a light flow of 5% CO2/95% air during recordings.
Signals were digitised with a 128-channel analogue/digital
converter card at a rate of 25 kHz and filtered (100Hz high
pass) to remove low-frequency events and baseline fluc-
tuations. Action potentials were detected by the crossing
of a threshold set to a fixed level of −20 μV, which typi-
cally approximated to 6 to 8 standard deviations from the
baseline noise level. Record samples (1ms pre- and 2ms
post-crossing of threshold) confirmed the characteristic
action potential waveform. Application of tetrodotoxin
(1 μM) totally abolished spiking activity, confirming the
absence of false positive event detection using these
methods. Spikes were not sorted to distinguish signals
generated by individual neurons, so represent multiunit
activity. Action potential timestamps were extracted using
batch scripts written for NeuroExplorer [29] and analysed
using software developed in the R statistical programming
environment to compute parameters that quantitatively
describe network activity. In total, 214 recordings were
taken from 32 arrays of cultured cortical neurons, and
329 recordings from 61 arrays of cultured hippocampal
neurons.

Data analysis
To summarise a 15-minute recording of network activ-
ity, we computed the following features. As all recordings
detected activity from multiple electrodes, we calculated
summary scalar values (termed the array value below) by
summarising the information from multiple electrodes.
In this way, each recording was then represented as an
11-dimensional vector.

1. Firing rate The mean firing rate of each electrode
was calculated. The array value was the median of all
electrode firing rates.

2. Within-burst firing rate Bursts were detected
independently on each electrode using our
implementation of the max interval method from
Neuroexplorer [29]. The parameters for burst
detection are given in Table 2. For each electrode we
calculated the mean of the firing rate during each
burst. The array value was the median of the
within-burst firing rates, ignoring electrodes where
no bursts were detected.

3. Burst rate For each electrode we calculated the
number of bursts per minute. The array value was as
per feature 2.

Table 2 Burst detection parameters

Parameter Value

Maximum beginning interspike interval 0.1 s

Maximum end interspike interval 0.25 s

Minimum interburst interval 0.8 s

Minimum burst duration 0.05 s

Minimum number of spikes in a burst 6

4. Burst duration The electrode value was the mean
duration of bursts on that electrode. The array value
was as per feature 2.

5. Fraction of spikes in bursts The electrode value
was the total number of spikes classified as belonging
to a burst divided by the total number of spikes on
the electrode. The array value was as per feature 2.

6. CV of IBI The electrode value was the CV
(standard deviation divided by mean) of the IBIs. The
array value was as per feature 2.

7. Rate of network spikes Network spikes were
defined as the array-wide average population activity
[13]. It is defined by dividing time into small bins
(here 3ms) and counting the number of electrodes
that generated at least one action potential in that
bin. A network spike is then defined as the period
when more than a threshold number of electrodes
(here n = 10) are simultaneously active. The array
value was the number of network spikes per minute.

8. Network spike peak During each network spike
we found the maximum number of active electrodes.
The array value was the median of the values from
each network spike in a recording.

9. Network spike duration The duration of each
network spike was the time (in seconds) that the
count of active electrodes exceeded the threshold
value. The array value was as per feature 8.

10. Mean correlation Given two different spike trains
from the recording, we calculated the correlation
between them using the spike time tiling coefficient
[14] with the coincidence window of �t = 5ms. (We
also tried �t = 50ms and 0.5ms, but results were
qualitatively similar.) The array value was the mean
of all distinct pairs of electrodes.

11. Fraction of electrodes exhibiting theta bursting
For each electrode, the log ISI histogram was
calculated and smoothed with the default kernel
density estimation routine in R. A spike train was
classed as showing theta bursting if a peak was
present in the 4 to 10Hz band of the histogram. The
array value was the fraction of electrodes on the array
that were classified as theta bursting.
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The Mann–Whitney test was used to test whether the
median array values at any given developmental age dif-
fered between the hippocampal and cortical networks.
The P values were then corrected for multiple compar-
isons using the false discovery rate method [30].

Clustering and classification
Standard principal component analysis was performed
(with variance normalisation for each feature) for all fea-
ture vectors of any given age. Two standard machine-
learning classifiers were tested: classification trees with
boosting (random forests) and SVMs using radial kernel
functions with γ = 1/11 [18]. For each age, we built
binary classifiers to predict the region (CTX/HPC) based
upon the 11 features measured from each recording. For
both classifiers, we used two-thirds of the recordings as
training data, with the remaining one-third used as test
data. Performance is reported as mean percentage of cor-
rect classifications, averaged over 500 repeats using dif-
ferent splits of the data into training and test sets. The
classification tree approach allows us to assess the rela-
tive importance of features by measuring the degree to
which they decrease the Gini index ([18], p. 319). These
values were normalised to the value of the top-performing
feature.

Data and code availability
Statistical analysis was performed in the R programming
environment using the SJEMEA package [31]. Data files
containing the spike times from all recordings analysed
here were stored in the HDF5 format using the framework
created for spontaneous activity in retinal recordings [32].
The only addition to the framework was a new metadata
item /meta/region containing either the phrase ‘CTX’
or ‘HPC’ depending on the network type. All data files and
analysis code relating to this paper are freely available [33].
This includes all the material required to regenerate the
figures and table in this article.
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