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Abstract

identity in the developing thalamus.

Background: The thalamus is often defined as the ‘gateway to consciousness’, a feature that is supported by the
specific connectivity and electrophysiological properties of its neurons. Inhibitory GABAergic neurons are required
for the dynamic gating of information passing through the thalamus. The high degree of heterogeneity among
thalamic GABA neurons suggests that, during embryonic development, alternative differentiation programmes exist
to guide the acquisition of inhibitory neuron subtype identity.

Results: Taking advantage of the accessibility of the developing chick embryo, we have used in ovo manipulations
of gene expression to test the role of candidate transcription factors in controlling GABAergic neuronal subtype

Conclusions: In this study, we describe two alternative differentiation programmes for GABAergic neurogenesis in
the thalamus and identify Helt and DIx2 as key transcription factors that are sufficient to direct neuronal progenitors
along a specific differentiation pathway at the expense of alternative lineage choices. Furthermore, we identify
Calb2, a gene encoding for the GABA subtype marker calretinin as a target of the transcription factor Sox14. This
work is a step forward in our understanding of how GABA neuron diversity in the thalamus is achieved during
development and will help future investigation of the molecular mechanisms that lead up to the acquisition of
different synaptic targets and electrophysiological features of mature thalamic inhibitory neurons.
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Background

The thalamus plays a crucial function in ensuring faithful
transfer of sensory information to the cortex. Excitatory,
glutamatergic relay neurons constitute the largest neur-
onal type in the thalamus. However, thalamic function is
not restricted simply to relaying information to and from
the cortex: the thalamus can highlight certain inputs and
suppress others, a feature that is evident during deep sleep
when coordinated oscillations in the thalamo-cortical sys-
tem suppress the ascending flow of peripheral and sensory
inputs [1], or in pathological conditions such as schizo-
phrenia [2] and absence epilepsy [3] when, respectively,
hallucinations and temporary loss of consciousness can
occur. The ability to modulate the flow of information is
supported by a second abundant neuronal type, the
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inhibitory GABA neurons of the reticular nucleus of the
thalamus (TRN). TRN neurons are defined by the expres-
sion of the parvalbumin gene [4], their fast spiking action
and specific connectivity, which is strictly confined within
the thalamus. While TRN neurons are a near homoge-
neous population, the remaining GABA inhibitory neu-
rons in the thalamus (nonTRN GABA thalamus) differ
from those of the TRN in their anatomical position,
morphology, connectivity, and molecular profile, and con-
sequently also function. NonTRN GABA neurons can be
grouped into two large categories: local interneurons ac-
tive within the thalamus and projecting neurons with
extra-thalamic targets. The TRN neurons derive from
GABAergic progenitors in the embryonic prethalamic
(pTh) compartment [5]. Whilst it was long thought that all
thalamic inhibitory neurons originate in the pTh, it is now
clear that the thalamus proper contains a resident popula-
tion of neuronal progenitors fated to become inhibitory.
Most nonTRN GABA neurons develop from a progenitor
type in the rostral part of the thalamus (rTh) [6,7].
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GadT (E). Scale bars: 100 um.

Figure 1 GABA progenitor domains in the chick thalamus. Progenitor territories with a GABAergic fate in the thalamus and pTh are visualized
by expression of Asc/l and Lhx5 and are present on both sides of the regional organizer zli, labeled by Shh expression. Thalamic progenitors
positioned further away from the zli acquire a glutamatergic fate and express Neurog! and Lhx9 (A). Schematic drawing illustrating the position
of prethalamic (pTh), rostral thalamic (rTh) and caudal thalamic (cTh) progenitor domains in lateral and coronal views of the developing chick
brain (B). Helt, Tall and Sox14 are expressed in rTh progenitors and precursors. Their expression overlaps with GABAergic markers Gadl and Reelin.
From the fifth day of incubation (E5), rTh GABA derivatives express the interneuron subtype marker and calcium binding protein Calretinin (Calb2)
(C). E6 rTh neurons can be visualized by immunodetection of the GABA-synthesizing enzymes GAD65/67. The calcium binding protein Calb2 is
present and co-expressed with the transcription factor Sox14 in a subset of rTh neurons (D). Position of rTh progenitors in the perirotundic area
of the chick thalamus by day E10 of embryonic development. The Calb2-expressing neurons appear to segregate from Npy-expressing neurons
within the perirotundic area and may represent two subtypes within the rTh pool. Both cell groups are labeled by the panGABAergic marker

Acquisition of cell lineage identity in the developing
thalamus is regulated by the activity of a local organizer,
the zona limitans intrathalamica (zli) acting via secretion
of the morphogen molecules Shh, Wnts and FGFs
[8-12]. Our and other groups have shown that different
developmentally regulated transcription factors are in-
duced by zli signaling on both sides of the organizer
[8-10,12-17]. We have recently reported that in the pTh
the pro-GABAergic transcription factors DIx1/2, which
are required for development of the TRN [5], suppress
the rTh nonTRN GABA differentiation programme [6].
This finding is consistent with the recent discovery that
the r'Th Gata2 gene exerts a similar and reciprocal func-
tion, by suppressing pTh TRN fate [18]. Both the Dix1/2
and Gata2/3 loss-of-function data suggest that on each
side of the diencephalic organizer zli, two alternative
developmental programmes lead to the formation of
GABAergic neurons. Here, we have investigated further
some of the transcriptional events that define the dif-
ferentiation trajectories of the two main subtypes of
thalamic GABAergic neurons using the chick embryo
system. Firstly, we demonstrate that the transcription
factor Helt is sufficient to drive differentiation along the
nonTRN GABA programme within the thalamus. Sec-
ond, we confirm and provide novel evidence that DIx2
acts as a lineage specification factor within the pTh to
induce TRN fate at the expenses of the nonTRN one.
Third, we report that Sox14, a post mitotic transcription
factor expressed in the rTh, is necessary and sufficient
to confer some nonTRN GABA neuron subtype features.
In conclusion, this work provides new experimental evi-
dence towards understanding the transcriptional pro-
grammes driving the acquisition of GABAergic subtype
diversity in the thalamus.

Results and discussion

Asymmetric GABAergic neurogenesis at the Th/pTh border
Similar to the mouse, the chick thalamus expresses the
panGABAergic marker Gadl in the pTh and rTh
(Figure 1C). Mirroring Gadl expression are GABA-
related transcription factors Asc/l and Lhx5 (Figure 1A).
Both progenitor domains, the pTh and rTh, also express

Reelin (Figure 1C). We recently defined the rTh in the
mouse by the sequential expression of Helt, Tall and
Sox14 transcription factor genes [6]; a similar cascade of
homologous genes defines the rTh avian equivalent
(Figure 1C). In the chick, post mitotic rTh neurons ex-
press the GABA subtype marker Calb2 (Figure 1C, D, E)
and, in common with the mouse, the Npy GABA sub-
type marker. Later in embryonic development, SoxI4
positive rTh derivatives appear to segregate in a lateral
Calb2 positive domain and a medial Npy positive do-
main (Figure 1E). The larger progenitor domain in the
caudal thalamus (cTh) (Figure 1B) expresses Neurog2
and Lhx9 (Figure 1A) and acquires a glutamatergic fate,
as described already in other model systems: the zebra-
fish [14] and the mouse [7].

Helt is sufficient to induce rostral thalamic identity in the

thalamus

While gain- and loss-of-function experiments have re-
vealed an important function for Helt in the embryonic
mouse midbrain [19,20]; Helt’s role in the developing di-
encephalon remains more ambiguous. Helt is required
for GABAergic differentiation in the pretectum, but not
in the rTh [6] and ectopic expression of the gene was
not sufficient to induce the GABA fate in the mouse di-
encephalon, possibly due to the reported early lethality
of the transgenic strategy used [21]. We took advantage
of the accessibility of the chick embryo to perform in
ovo electroporation of a constitutively active Helt expres-
sion construct in the diencephalon. Ectopic Helt expres-
sion in the thalamus prior to the onset of neurogenesis
(E2.5) suppresses the glutamatergic fate, indicated by the
lack of Neurog2 and Lhx9 expression by E5 (Figure 2A)
and concomitant differentiation towards a rTh subtype
that expresses the panGABA markers Ascll, Gadl and
Reelin and rTh transcription factor genes Gata2, Tall,
Sox14 (Figure 2B, C). Taken together, these data led us
to conclude that ectopic expression of Helt in the ¢Th
progenitor domain is sufficient to divert the fate of these
progenitors from glutamatergic to GABAergic and more
specifically towards a rTh GABAergic fate (Figure 2E). It
should be noted that all rTh markers analyzed are also
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Figure 2 Helt expression is sufficient for rostral thalamic (rTh) subtype specification. Ectopic expression of the rTh transcription factor Helt
in the caudal thalamic (cTh) glutamatergic progenitor domain at E2.5, suppresses Neurog2 and Lhx9 expression, indicative of a loss of glutamatergic
progenitor identity (A). cTh progenitors expressing ectopic Helt, acquire expression of all rTh markers tested: proliferative zone (AsclT) and postmitotic
compartment (Gata2, Tall and Sox14) (B). PanGABAergic markers are also induced (Gad1 and Reelin) (C). Ectopic Helt expression in the prethalamic
(pTh) GABA progenitor domain fails to induce rTh subtype identity, suggesting that other co-factors may be required (D). Schematic drawing
summarizing the effect of ectopic Helt expression in the three progenitor domains of the thalamus: cTh, rTh and pTh (E). Scale bars: 100 um.

expressed by some GABAergic neurons in other brain
compartments (for example, the caudal pretectum and
the ventral and dorsal midbrain); it is, therefore, solely
on the grounds that electroporated cells expressing Helt
ectopically are contained within the thalamus that we
conclude they have acquired a rTh identity.

pTh and thalamic domains are separated by the zli, a
morphological and molecular landmark. We used ex-
pression of Shh, visualized by in situ hybridisation (ISH)
on consecutive coronal brain sections (data not shown)
to draw a dotted line dividing pTh and thalamic com-
partments (Figure 2A, B, D). In contrast to the effect
seen in the thalamus, ectopic expression of Helt in the
pTh failed to induce markers of rTh subtype identity
(Figure 2D), implying that the activity of prepatterning
genes, such as Irx3 [8,13] may be required for the ob-
served thalamic phenotype.

DIx2 induces prethalamic GABAergic neurogenesis in the
thalamus

Expression of Dix2 defines neuronal progenitors in the
pTh and is not expressed in the rTh. DIx2 regulates
GABA progenitor migration and differentiation in the tel-
encephalon [22] and the prethalamus [5] but its role in
lineage fate decisions in the diencephalon has received
limited attention [23,24]. We have shown that in the ab-
sence of both DixI and Dix2 genes (Dix1/2 compound
knockout), the mouse pTh acquires a rTh fate, leading to
the formation of an ectopic intergeniculate leaflet (IGL)
expressing Npy [6]. We also observed how the ectopic
r'Th that forms in the pTh of DIx1/2 compound mutant
mice lacks expression of the earliest rTh marker Helt. This
is supportive of a model whereby GABA progenitors re-
tain latent plasticity for subtype identity upon cell cycle
exit. The model finds further support in the recent report
that Gata2 and Gata3 act post mitotically in the rTh to
suppress the alternative pTh fate by suppressing Dix2 ex-
pression [18]. To test whether the reciprocal regulation is
also true, we investigated Gata2 and Gata3 expression in
the pTh of the DIx1/2 compound knockout mouse
(Figure 3A). In agreement with our previous observation
[6] the Gata2 and Gata3 genes are also ectopically
expressed in the pTh of Dix1/2 mice, further confirming
that DIx1/2 act as lineage identity factors to support a
pTh GABA subtype fate. To further investigate the role of
DIx2 in cell lineage decisions, we forced expression of

DIx2 in the thalamus. Forced expression of DIx2 in the
cTh induces a glutamatergic to GABAergic fate switch as
shown by the induction of the proneural gene Asc/I and
panGABA marker Gadl (Figure 3B, E); ectopic GABA dif-
ferentiation driven by DIx2 presents features of pTh iden-
tity (Arx, Meis2) (Figure 3C); this result is consistent with
the previous observation of ectopic induction of the Dix1/
2 effector gene Arx under similar overexpression condi-
tions [5]. Ectopic Dix2 expression in the rTh does not
alter its overall GABAergic fate, but suppresses rTh
GABA subtype identity (7all, Sox14) (Figure 3B, D, E).

Sox14 is required for rostral thalamic subtype marker
expression

Sox14 is expressed by GABAergic progenitors in the rTh
upon cell cycle exit [6]. We described a Sox14 loss of func-
tion phenotype in the developing mouse diencephalon,
suggestive of a role in positioning of rTh derivatives in the
developing thalamus [6]. A possible role for Sox14 in regu-
lating some aspects of subtype identity is supported by
our previous observation that the proportion of rTh neu-
rons expressing the GABA subtype marker Npy is in-
creased in the embryonic SoxI4 knockout mouse, a
phenotype that, we speculate, results from retention of
ventral IGL derivatives within the presumptive IGL. Here,
we have adopted a chick-specific RNA interference strat-
egy, based on the U6 promoter expression of a microRNA
operon [25], to achieved acute Sox14 knockdown (Sox14i)
in the developmental time window between E2.5 and E5.5
(Figure 4A). rTh progenitors with reduced Sox14 expres-
sion retain their GABAergic fate, as indicated by the pres-
ence of the GABA enzymes Gad65/67 and expression of
the r'Th genes Ascll, Tall and Npy (Figure 4B), but fail to
express the GABA subtype marker Cal/b2 (Figure 4C).

To investigate further the relationship between Sox14
and Cualb2, we investigated the effects of ectopic expres-
sion of Sox14 in the pTh Calb2 negative GABAergic
domain. Consistent with the observed loss of Calb2 ex-
pression in the Sox14i rTh, we observed a rapid upregula-
tion of Calb2 in pTh GABA progenitors upon ectopic
Sox14 expression (Figure 5A). Ectopic Calb2 protein can
be detected in the more mature neurons expressing ec-
topic Sox14 but is absent in proliferating progenitors
(Figure 5B), the delayed onset of expression is reminiscent
of the late onset of Calb2 expression seen in rTh-derived
neurons (Figure 1C, D). Gata2, a rTh marker active
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progenitor domains rTh and cTh (E). Scale bars: 100 um.

Figure 3 DIx2 induces GABAergic differentiation and suppresses rostral thalamic (rTh) subtype identity. Key rTh transcription factor
genes Gata? and Gata3 are expressed in the pTh of Dix1/2 compound knockout mice (red arrows), providing strong evidence that Dix1/2 are
required to maintain pTh identity (A). Ectopic expression of the pTh gene DIx2 in the glutamatergic cTh, induces GABAergic differentiation,
visualized by induction of the panGABAergic markers Gadl and proneural gene Ascl1 (B). Ectopic expression of DIx2 induces pTh GABA subtype
progenitor markers in the rTh and cTh (Arx, Meis2) (C). Consistent with a role in controlling GABA subtype identity in the thalamus, rTh markers
(Tall, Sox14) are downregulated upon ectopic expression of DIx2 (D). A schematic summary of the effect of ectopic DIx2 expression in the

upstream of SoxI4 [18] was not induced by ectopic Sox14
(Figure 5A). Similarly, only a minor effect was noticed on
the panGABA proneural gene Asc/1 (Figure 5D), possibly
due to the predicted function of Sox14 in promoting cell
cycle exit [26]. Yet, pTh genes DIx2 and Meis2 were heav-
ily downregulated upon Sox14 expression (Figure 5C, E).
Ectopic Sox14 expression does not interfere with gluta-
matergic versus GABAergic fate determination in the cTh
(not shown), nor does it interfere with general GABA dif-
ferentiation (Figure 5D, E).

Conclusions

In this article we describe the organization of neuronal
progenitor domains in the chick thalamus on the basis
of previous findings in the zebrafish and mouse and con-
clude that this is well conserved between the three
model systems. Taking advantage of the conservation be-
tween early neurogenesis in the chick and mouse, we
then used in ovo manipulations of gene expression to
further investigate the presence of two alternative tran-
scriptional programmes on both side of the mid-
diencephalic organizer zli that guide neuronal progenitor
differentiation down the GABAergic pathway, thus gen-
erating distinct thalamic inhibitory subtypes. The acces-
sibility of the chick embryo and its amenability to
in vivo manipulations facilitated the discovery of novel
functions for three developmentally regulated transcrip-
tion factors: Helt, DIx2 and SoxI14, which contribute to
specify GABAergic neuron diversity in the thalamus.
Helt is sufficient to divert cTh progenitors towards a
rTh GABA subtype fate. This function is likely to de-
pend on the previous expression of prepatterning genes
that confer thalamic identity over the pTh one, as Helt
expression in the pTh does not change GABA subtype
identity. In agreement with previous observations [5], we
confirm that DIx2 is sufficient to induce the GABAergic
fate in excitatory thalamic progenitors, inducing expres-
sion of Ascll, Gadl, Meis2 and Arx. Furthermore DIx2
can suppress the rTh GABA subtype fate via downregu-
lation of Tall and Sox14. Sox14 acts post mitotically to
induce the rTh subtype marker and calcium binding
protein calretinin (Calb2). Calb2 induction by Sox14 is
rapid, as it anticipates the time of normal expression in
the r'Th (E5.5), but follows nonetheless the stepwise pro-
gression along cellular differentiation as it is transcribed

in SoxI4-expressing pTh neurons in the mantel layer
and not in those in the proliferative zone. At the same
time, SoxI4 can repress other transcriptional regulators
in the pTh, such as Dix2, Meis2 and Arx. These new
findings add support to the emerging view that differen-
tiating GABAergic neurons retain subtype lineage plasti-
city upon leaving the cell cycle: in the pTh, DIx1/2
suppress a latent rTh fate [[6] and this manuscript],
whilst in the rTh, Gata2/3 suppress a latent pTh fate
[18]. In both cases, cells have already progressed from
progenitors to precursors. Given that a similar transcrip-
tion factor cascade to the one described for the rTh
occurs also at other brain locations, it would seem rea-
sonable to speculate that preexisting patterning genes
and extrinsic factors play an essential role in shaping up
the full transcriptional profile of otherwise similar
GABAergic neurons in functionally distinct anatomical
regions. The evolution of two alternative and mutually
exclusive GABAergic differentiation programmes in the
thalamus may be instrumental to achieve a broad
spectrum of inhibitory synaptic connectivity and electro-
physiological properties at this crucial anatomical node
along corticopetal and corticofugal pathways. It should
be considered that, whilst the organization of the main
neuronal progenitor domains is conserved, different cell
sorting and migratory pathways shape the adult thal-
amus in the different model systems, hence the main
adult structure derived from rTh progenitors is the IGL
in the mouse and the perirotundic area in the avian sys-
tem [27,28]. Whilst we have further characterized the
developing IGL as a source of tangentially migrating
GABA neurons in the thalamus [6], it remains unknown
whether the avian perirotundic area asserts a similar
function. In consideration of the broad functional het-
erogeneity of GABA neurons in the thalamus, it is likely
that transcriptional regulation continues to play a crucial
role well after the initial differentiation of rTh and pTh
GABA neurons, to further guide the acquisition of di-
verse cellular properties.

Methods

Chick and mouse embryos

Fertilized hens eggs (Henry Stewart, Louth, UK) were in-
cubated in a humidified room at 38°C for 3 to 6 days be-
fore harvesting and dissecting in cold PBS for whole
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Figure 4 Calb2 subtype marker expression requires Sox74. RNA interference was used to downregulate expression of the endogenous Sox14
gene in the rTh. Four different sequences of the chick Sox74 mRNA were targeted (seq1 to 4); their effect in inducing Sox74 mRNA degradation
was tested by transient co-transfection in cell culture or co-electroporation in the embryo. The Sox14i seq2 was used to obtain the data in A and
B (A). Acute downregulation of Sox74 from E2.5 has no effect on the expression of rTh genes in the proliferative (Asc/7) and postmitotic (Tall,
Npy) domains, whilst a reduction of endogenous Sox74 mRNA is observed (B). Lack of Calb2 expression in the rTh expressing a Sox14i construct.
Despite the strong downregulation of the subtype marker Calb2, no changes in expression of the panGABAergic marker GAD65/67 could be
detected; this, together with the lack of any detectable effect on other pan- and rTh GABAergic transcription factors suggests a restricted role for
Sox714 in controlling GABA neuron subtype specific gene expression (C). Scale bars: 100 um.
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Figure 5 Sox14 expression induces Calb2 and suppresses prethalamic (pTh) GABA identity. Sox14 expression in pTh GABA progenitors
results in the selective activation of the rTh subtype marker Calb2, whilst the upstream regulator of rTh identity Gata? was not activated (A).
Immunohistochemistry illustrating the co-localization of Calb2 protein in pTh progenitors expressing the transcription factor Sox14 (B). Expression
of pTh progenitor markers (DIx2 and Meis2) is reduced upon ectopic expression of Sox14 (C), while the overall GABAergic identity is not affected
(Gad1) (D). Schematic recapitulation of the cross-regulation of GABA subtype restricted transcription factor on the rostral and pTh sides of the zli.
Gata2/3 and DIx1/2 have similar but reciprocal roles in suppressing the alternative subtype fate. Sox14, which acts downstream of Gata2 controls
transcription of a subtype marker gene: Calb2. Its ectopic expression is not compatible with that of pTh transcription factor genes (E). Scale

mount ISH. Staging of chicken embryos was according
to the embryonic day (E) since egg incubation began.
Fixed (4% PFA) double knockout DIx1/2 mouse embryos
and littermate controls were a kind gift from John L
Rubenstein (UCSF). Mice were bred and maintained at
UCSF under local ethical and legal regulations.

Gain and loss of function DNA vectors

To achieve a knockdown effect on the expression level of
endogenous SoxI4, we adopted the strategy described in
[25]. Briefly, 22 nucleotide target sequences were identi-
fied using an siRNA design tool available at (http://sirna.
wi.mit.edu) (Whitehead Institute for Biomedical Research)
starting at positions: 299, 500, 545 and 745 of NCBI se-
quence NM_204761. Sox14 specific oligonucleotides and a
scrambled sequence were subsequently cloned in the sec-
ond miRNA site of vector pREPRNAi to generate syn-
thetic miRNA30-like hairpins under the control of the
chick U6 snRNA promoter, as described in [25].

To drive ectopic expression of Helt, a mouse cDNA
containing the entire coding sequence (CDS) of the gene
was cloned downstream of the constitutive promoter of
the pCAGGS vector to transcribe a bicistronic mRNA
containing ires-eGFP. Similarly, to drive expression of
Sox14, the entire CDS of the chick gene was cloned in
the pCAGGS-ires-eGFP vector. The CDS of chick Sox14
was also cloned in frame with three FLAG tags in the
p3XFLAG-CMV-7.1 (Sigma-Aldrich, St.Louis, Missuouri,
USA) to generate an N-terminus FLAG-tag version of the
protein. Ectopic expression of mouse DIx2 was obtained
using a constitutive expression vector (pCAGGS) kindly
provided by John L Rubenstein.

Evaluation of gene knockdown efficiency

In order to assess which of the four pRFPSox14i plasmids
had the strongest knockdown effect, each pRFPSox14i
DNA and an equimolar amount of p3XFLAGSox14 was
co-transfected in cultured COS cells using a standard
Lipofectamine protocol (Thermo Fisher Scientific,
Massachusetts, USA). Total cell lysate for each Sox14i
combination was diluted 400 times and used as substrate
to detect FLAG and RFP proteins by Western blotting
(mouse anti-FLAG Sigma F1804; used at a dilution of
1:3,000) and rabbit anti-RFP (Millipore, Massachusetts,

USA AB3216; used at a dilution of 1:500). To test for
downregulation in vivo, each pRFPSox14i vector in equi-
molar combination with the p3XFLAGSox14 was co-
electroporated in the diencephalon of E2.5 chick embryos.
Electroporated embryos were collected after 48 hours of
incubation and processed for immunohistochemical de-
tection with mouse anti-FLAG (Sigma F1804; used at a di-
lution of 1:1,000) and rabbit anti-RFP (Millipore,
Massachusetts, USA AB3216; used at a dilution of 1:100)
on coronal sections.

In ovo electroporation

Chick embyros were electroporated at E2.5 using fine
platinum electrodes and an ElectroSquare Porator,
Harvard Apparatus, Massachusetts, USA. Settings were
as follows; 15 V, 3 pulses, 50 ms pulse duration, 950 ms
interval. DNA was diluted to a final concentration of
1 pg/ml and fast green added to aid visualization. DNA
injected into the neural tube at diencephalon level; elec-
trodes were placed either side of the diencephalon over
the thalamus or prethalamus. DNA overexpression vectors
plasmids used; pCAGGS-Helt-ires-eGFP, pCAGGS-Sox14-
ires-eGFP, pCAGGS-DIx2 (gift from John L Rubenstein,
UCSF) (co-electroporated with pCAGGS-eGFP), pRFPSox
14i(1-4), pRFPscrambled and p3XFLAGSox14.

In situ hybridisation and immunohistochemistry

Electroporated and control embryos were dissected in
ice-cold PBS and cryoprotected by passage through ser-
ial dilutions of sucrose/PBS equilibration; 10%, 20% and
finally 30% sucrose/PBS. Samples were then embedded
(Tissue Tek, Sakura, Torrance, Canada) and frozen by
floating on liquid nitrogen. Cryosections were cut at 12-
pum thickness. ISH was carried out as published in [29]. In
brief: hybridisation with digoxigenin (DIG) and or fluores-
cein isothiocyanate (FITC; Roche, Basel, Switzerland) la-
beled riboprobes was carried out overnight at 65°C.
Washing steps were carried out in MABT (100 mM ma-
leic acid, 150 mM NaCl, 0.1% Tween 20). Blocking was
performed in 2% Boehringer Blocking Reagent (BBR)
(Roche, Basel, Switzerland), 20% normal goat serum in
MABT. The anti-DIG or anti-FITC alkaline phosphatase
(AP)-conjugated antibody (Roche, Basel, Switzerland) was
incubated overnight at 4°C. Color reaction was developed
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using NBT/BCIP substrate in NTMT (pH 9.5) or Fast Red
in Tris (pH 8.2). For two color ISH, the first AP-
conjugated antibody was removed from the section via a
30-minute incubation in 5 mM EDTA/PBS at 70°C. Chick
anti-Gata2 ISH probe was a gift from Anthony Graham
(KCL). Mouse anti-Gata2/3 ISH probes were a kind gift
from Maxim Bouchard (McGill University). After comple-
tion of ISH protocol, anti-GFP immunohistochemistry
was carried out in order to identify electroporated cells.
Sections were blocked in 5% normal goat serum with
0.25% Triton X-100 for one hour at room temperature,
rabbit anti-GFP (Thermo Fisher Scientific, Massachusetts,
USA A11122, 1:100 dilution) added to block incubated
overnight at 4°C, secondary antibody goat anti-rabbit
Alexad88 (Thermo Fisher Scientific, Massachusetts, USA;
added to block at a dilution of 1:500), incubated for 1 hour
at room temperature. Other antibodies used were: guinea
pig anti-Sox14 (gift from Thomas Jessell, Columbia Uni-
versity, New York; used at a dilution of 1:5,000), rabbit
anti-calretinin  (Calb2, AbCam, Massachusetts, USA
ab702; used at a dilution of 1:100), rabbit anti-Gad65/67
(AbCam, Massachusetts, USA ab11070; used at a dilution
of 1:5,000) rabbit anti-RFP (Millipore, Massachusetts,
USA AB3216; used at a dilution of 1:100) and goat sec-
ondary Alexa-conjugated antibodies (Thermo Fisher Sci-
entific, Massachusetts, USA; used at a dilution of 1:500).
The sections were then nuclear counterstained with
100 ng/ml Hoechst in PBS for 10 minutes before mount-
ing in antifade Prolong Gold (Thermo Fisher Scientific,
Massachusetts, USA). Images were taken with an Eclipse
series Nikon, Tokyo, Japan confocal microscope and proc-
essed with Image J (rsbweb.nih.gov/ij/).
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