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Background

Cell surface heparan sulfate proteoglycans (HSPGs) have
been implicated as key regulators of patterning and
growth in animal development [1,2]. Participation in

Abstract

Background: Cell surface heparan sulfate proteoglycans (HSPGs) act as co-receptors for multiple
families of growth factors that regulate animal cell proliferation, differentiation and patterning.
Elimination of heparan sulfate during brain development is known to produce severe structural
abnormalities. Here we investigate the developmental role played by one particular HSPG, glypican-
| (Gpcl), which is especially abundant on neuronal cell membranes, and is the major HSPG of the
adult rodent brain.

Results: Mice with a null mutation in Gpcl were generated and found to be viable and fertile. The
major phenotype associated with Gpc/ loss is a highly significant reduction in brain size, with only
subtle effects on brain patterning (confined to the anterior cerebellum). The brain size difference
emerges very early during neurogenesis (between embryonic days 8.5 and 9.5), and remains
roughly constant throughout development and adulthood. By examining markers of different
signaling pathways, and the differentiation behaviors of cells in the early embryonic brain, we infer
that Gpcl-- phenotypes most likely result from a transient reduction in fibroblast growth factor
(FGF) signaling. Through the analysis of compound mutants, we provide strong evidence that Fgf17
is the FGF family member through which Gpcl controls brain size.

Conclusion: These data add to a growing literature that implicates the glypican family of HSPGs
in organ size control. They also argue that, among heparan sulfate-dependent signaling molecules,
FGFs are disproportionately sensitive to loss of HSPGs. Finally, because heterozygous Gpc/ mutant
mice were found to have brain sizes half-way between homozygous and wild type, the data imply
that endogenous HSPG levels quantitatively control growth factor signaling, a finding that is both
novel and relevant to the general question of how the activities of co-receptors are exploited
during development.

these events is generally thought to reflect their functions
as co-receptors for diverse growth factor families, includ-
ing fibroblast growth factors (FGFs), Wnts, Hedgehogs
and bone morphogenetic proteins (BMPs) [3-6]. In both
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vertebrates and invertebrates, disruption of heparan sul-
fate biosynthesis leads to severe, pervasive developmental
abnormalities. For example, mice completely deficient in
heparan sulfate arrest in gastrulation [7].

In contrast, the elimination of the individual core proteins
that carry cell surface heparan sulfate generally produces
more subtle or tissue-restricted defects, particularly in
mammals [8-16]. Most likely this reflects the relatively
large number of cell surface HSPGs (six glypicans and four
syndecans in mammals), their overlapping patterns of
expression, and a likelihood of functional redundancy
that is made particularly high by the fact that carbohy-
drate moieties mediate much of their function. Despite
such complexity, the analysis of core protein mutants has
provided novel insights into at least some of the develop-
mental and physiological processes in which HSPGs par-
ticipate.

The glypicans define a structurally conserved family of gly-
cosylphosphatidylinositol-anchored HSPGs that have
been extensively studied for their roles in both develop-
ment and cancer [17-27]. Of the six glypicans in mam-
mals, glypicans 1 and 2 (Gpcl and Gpc2) were identified
early on as major HSPGs of the developing brain [28-31].
Subsequently, Gpc4 and Gpc5 were shown to be region-
ally expressed in the developing brain as well [32-34]. Bio-
chemical studies suggest that the most abundant glypican
in the rodent brain, at least from late gestation onward, is
Gpcl [29,31]. During development, Gpcl is expressed in
both neuroepithelial cells and mature neurons; it is partic-
ularly enriched in axons and nerve terminals [35,36]. We
reasoned, therefore, that loss of Gpcl might produce
defects in neurogenesis and/or axonal guidance, both of
which are driven by growth factors regulated, in many
cases, by HSPGs. As described below, the brains of mice
rendered null for Gpcl were morphologically normal,
except for subtle mispatterning of the anterior cerebellum,
but were abnormally small. Unexpectedly, we found that
the reduction in brain size in mutant mice reflects a spe-
cific role for Gpcl at the earliest stages of neurogenesis,
before embryonic day (E)9.5.

Results

Generation of glypican-1 null mice

Homologous recombination was used in embryonic stem
(ES) cells to flank the first exon of Gpcl - which includes
the translational start site and signal sequence - with loxP
sites, and successfully targeted cells were transiently trans-
fected with Cre recombinase to induce excision (Figure
1A). Several independently excised ES clones were
injected into C57BL/6 blastocysts to generate chimeric
mice, one of which was extensively outcrossed to outbred
(CD1; 210 generations) and inbred (C57Bl/6; >7 genera-
tions) mice (Figure 1B). This mutant allele (formally des-

http://www.neuraldevelopment.com/content/4/1/33

A RV "_"I: Xho  Xba RV
proba . TK neo
Xho  Xba
. oy, R .
RV
RV [ -Xba = AV
>
RV R -
O =FRT site
P = loxP site

B +/+ +/- -/- C +/+ +/ - -/~

Hase

+/+ +/- -/-

T 1 T 1
Gpc'l—‘“*!ﬁ:

-t -
Case =
Hase + + + + + -I-

| GPC1+/+ | GPC1+/- || GPC1-/- |

H? N FB

Yo} : -

. 1’& k| v
o)

S »

E9.5

Figure |

Page 2 of 19

(page number not for citation purposes)



Neural Development 2009, 4:33

Figure |

Targeted mutation of the Gpcl locus creates a null
allele. (A) Targeting strategy. A construct was created in
which loxP sites flank exon | of Gpcl and FLP recognition
target (FRT) sites flank negative (TK) and positive (neo) selec-
tion markers. After transfection into embryonic stem (ES)
cells, Southern blotting, using a probe located outside the
targeted region, permitted verification of targeted integra-
tion. Transient tranfection of targeted ES cells with a Cre
expression plasmid was then used to remove Gpcl exon |
and selection markers, prior to generation of mice. (B) lden-
tification of the Gpcl wild-type (+) and mutant (-) allele by
PCR in mice. (C) Immunoblotting of adult brain membrane
fractions with an anti-Gpc| antibody. The presence of a dis-
crete band found only in samples pretreated with hepariti-
nase (Hase) demonstrates that the immunoreactive molecule
is a heparan sulfate proteoglycan (HSPG) core protein. Note
the decreased band intensity in heterozygous animals, and
complete absence of immunoreactivity in homozygotes. The
small apparent difference in mobility and slight tilt of the
wild-type band is an artifact of uneven electrophoresis. (D)
Immunoblotting of adult brain membrane HSPG core pro-
teins using 3G 10 antibody. Notice that the loss of a band at
the correct molecular weight for Gpcl in mutant animals is
not accompanied by a substantial, consistent change in the
presence of other HSPG cores. Hase, Heparitinase; Case,
Condroitinase ABC. (E-G) Whole-mount in situ hybridiza-
tion for Gpcl at E8.5. Genotypes are as indicated. Red
arrowheads point to areas of high Gpcl expression in the
developing brain and branchial arches. Notice that Gpc/
expression is greatly reduced or absent in homozygous
mutants. Levels in heterozygotes are intermediate. (H, I)
Whole-mount in situ hybridization for Gpc! in wild-type (H)
and Gpcl-- () embryos at E9.5. Staining has been deliberately
overdeveloped to show the absence of signal in the mutant,
suggesting that mutant Gpc/ mRNA is unstable. FB, forebrain;
HB, hindbrain; MB, midbrain.

ignated Gpcltm! Alan) wi]l be referred to here as Gpcl-. A
second allele - a gene trap insertion of LacZ into the fourth
intron of Gpcl - will be referred to as Gpc1LtacZ,

Gpcl-/- and GpcllacZ/lacZ mice were viable and fertile on
outbred and inbred backgrounds, and appeared grossly
normal. Biochemical studies revealed a complete absence
of Gpcl core protein from the brains of homozygous
Gpcl-/- animals, with intermediate levels in heterozygotes
(Figure 1C,D). The expression of other brain heparan sul-
fate and chondroitin sulfate proteoglycans was not signif-
icantly affected (Figure 1D). Immunohistochemistry also
demonstrated a loss of Gpcl1 staining in both Gpcl1-/-and
Gpcllacz/LacZ mice (not shown). In situ hybridization stud-
ies, using both whole embryos and adult brain sections,
also revealed a lack of Gpc1 transcripts in Gpcl-/-animals
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(Figure 1E-I), suggesting that these animals are essentially
protein- and message-null.

Loss of glypican-1 leads to reduced brain size and subtle
patterning abnormalities of the cerebellum

Gpcl-/- mice were indistinguishable from wild type in
gross appearance, size, lifespan, and a variety of simple
behaviors (data not shown). Their internal anatomy
appeared normal, with the exception of the brain, which
was noticeably small (Figure 2A). On the CD1 back-
ground, adult Gpc1-/-brains weighed 15.5 + 1.0% less than
wild type, and Gpc1-/+brains weighed 7.8 + 1.0% less (Fig-
ure 2B). Both results were highly statistically significant,
as variation in brain size among individuals within mouse
strains is normally very small [37].

On a C57/Bl6 background, reductions in Gpc1/-and Gpcl-
/+ brain weight were also evident, but less pronounced
(11% for Gpcl+/-; data not shown), possibly reflecting the
fact that wild-type C57/Bl6 brains are approximately 5%
smaller than wild-type CD1 brains to begin with. As
shown in Figure 2C, GpcllacZ/lacZz mice also displayed
reduced brain size (the higher variance of these data likely
reflects the mixed CD1/C57 background of these ani-
mals). The brain weight reduction did not correlate with
sex or body weight in Gpcl- or Gpclt< mutant animals
(Figure 2D).

To determine whether changes in brain size were due to
the presence of fewer cells or smaller cells, DNA was
extracted from whole brains and quantified using Hoechst
33258 fluorescence [38]. As shown in Figure 2E, Gpcl-/-
mice had about 20% less DNA per brain than their wild-
type littermates. Thus, loss of Gpcl leads to a 20%
decrease in the number of brain cells.

Despite this, the shapes of Gpcl/- forebrains were mor-
phometrically normal (Additional file 1), and most struc-
tures showed no apparent patterning defects. The major
exception was found in the gyri of the cerebellar vermis,
where the most anterior lobe (lobe I) either did not form
or was rudimentary (Figure 3A-F). In addition, the pri-
mary fissure was shortened by 12%, with no significant
change in the lengths of the other fissures, or in the overall
cerebellar perimeter (data not shown). Notably, structures
that are disrupted in heparan sulfate-deficient conditional
Ext]l mutant mice, such as the interhemispheric commis-
sures and the forebrain septum [39], were present in Gpcl
mutants (Figure 3G-J). In addition, no obvious changes in
lamination of the cerebellar or cerebral cortices were
observed (Figure 3K-N; and data not shown), and staining
for markers of neuronal subpopulations, such as calbin-
din and parvalbumin, appeared normal (data not
shown).
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Figure 2

Adult brain weight from Gpcl null mutant is significantly reduced. (A) Dorsal views of freshly dissected adult brains.
Note the apparent reduction in size of Gpcl-- brains. (B, C) Wet weights of fresh adult brains. Gpc/ genotypes are as indi-
cated. There is a 15.5% decrease in brain weight in homozygous Gpcl mutants (P < 0.0001); heterozygotes show an intermedi-
ate phenotype (7.8% decrease; * and **P < 0.0001). (B) N = 32 for +/+; 29 for +/-; 36 for -/-. Reduced brain weight is also
observed in GpclteZ mutants. (C) N = 9 for +/+; 10 for LacZ/+; 7 for LacZ/LacZ. (D) Body weights of adult Gpcl mutant and
wild-type littermates, grouped by sex. No significant effect of genotype is observed. N = 23 for +/+; 30 for +/-; 37 for -/-. (E)
Total DNA content of mutant and wild-type brains was measured as an indication of cell number. The data imply a 20% reduc-
tion in Gpcl--brains. (*P < 0.001; N = 5 for +/+, and 5 for -/-).
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Figure 3

Cerebellar foliation defects in Gpcl null mice. (A-F) Development of cerebellar foliation. Nissl-stained mid-sagittal sec-
tions are shown at postnatal days (P)0, 7 and 27. Lobes | to X are as marked in (H). As early as P7, a loss or severe reduction
in folium one (red arrowhead) can be seen in Gpcl-- mice. (G-J) Forebrain anatomy. Coronal sections at the level of the hip-
pocampus (G, H) and septum (I, ]) show that midline commissural tracts appear normal in Gpc/-- mice. (K-N) Cerebellar lam-
ination. Horizontal sections at P7 (K, L) and P27 (M, N) are shown. The appearance and thickness of the cellular and fiber tract
layers are normal in Gpcl--mice. CC, corpus callosum; EGL, external granular layer; HC, hipocampal commissure; IGL, internal
granular layer; ML, molecular layer; PL, purkinje cell layer; S, septum. Bars in (F, H, J) = | mm.
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Figure 4 (see legend on next page)
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Figure 4 (see previous page)

The Gpcl mutant brain phenotype emerges early in neural development. (A) Lateral images of embryonic day
(E)8.5, E9.5 and EI I.5 wild-type (+/+) and Gpcl-- (-/-) embryos. Because the developmental stage of embryos is highly variable
at E8.5 to E9.5, not every image is fully representative of the average for that genotype (for quantitative data, see (B, C) below).
(B) Gpcl--embryos display smaller brains starting at E9.5. Brain size was estimated from photographic images, as described in
Additional file 2. Averages of estimated cranial area (at E8.5 and E9.5) and cranial volume (EI |.5) were obtained for wild-type
and homozygous mutant embryos in multiple litters (N = 23 for +/+ and N = |5 for -/- at E8.5; N = 25 for +/+ and N = 22 for
-/- at E9.5; N = 10 for +/+ and N = |8 for -/- at EI |.5). Units are pixels? (x 104) and pixels3 (x 10¢) for area and volume meas-
urements, respectively. Note the 14.1% decrease in area (* and **P < 0.05) that emerges at E9.5 (consistent with an approxi-
mately 20.4% decrease in volume). (C) Comparison of cranial area with somite number in E8.5 and E9.5 wild-type (+/+) and
Gpcl--(-/-) embryos. Linear regression lines demonstrate that, even when variation in somite number is controlled for, Gpcl--
brains are of normal size at E8.5, and abnormally small at E9.5. (D-F) Quantification of cell proliferation in the embryonic brain.
Sagittal sections of E9.5 embryos were immunostained for phosphohistone H3 (PHH3) (D), counterstained with bizbenzamide
(E) and the two images merged (F). Note the concentration of labeled cells along the pial and ventricular margins of the neu-
roepithelium (outlined). (G, H) Sets of serial sections were stained in this manner from multiple wild-type and Gpc/-- embryos
at E8.5 (N =5 for both +/+ and -/-), E9.5 (N = 8 for +/+ and N = 7 for -/-), and EI |.5 (N = 7 for +/+ and N = 6 for -/-), and
numbers of PHH3-labeled cells within the neuroepithelium were counted and normalized to neuroepithelial area for either the
entire embryo (G) or the forebrain alone (H). The data show a statistically significant (*P < 0.001) decrease in PHH3-labeling

index at E9.5, but no change at EI |.5.

Brain size reduction reflects an early embryonic
requirement for Gpcl

Although Gpc1 has been reported to be the major HSPG
of the adult brain [35], it is also expressed throughout
development of the nervous system, and can be detected
in neural tissue as early as head-fold stage (around E7)
[35,40]. We therefore measured brain size in Gpcl-/- mice
at various developmental stages. At birth, Gpcl-/- brains
weighed 15 to 20% less than wild-type brains, that is, they
were smaller to about the same degree as seen in adult-
hood (data not shown). Prior to birth, weights could not
be measured accurately given the small size of embryonic
brains and the need to dissect under liquid; instead, vol-
umes were estimated from photographic images of fresh
embryos (Additional file 2). As shown in Figure 4A-B the
estimated volume of Gpcl-/-brains was 22% below that of
wild-type littermates as early as E9.5 (Figure 4B). In con-
trast, brain volumes measured one day earlier (E8.5)
exhibited no difference between mutant and wild-type lit-
termate embryos. Apparently, a phenotype of about the
same magnitude as seen in adult animals emerges over the
course of a single day of development.

To test whether the smaller brain size of E9.5 mutant
embryos is a consequence of general developmental
delay, we plotted brain size against somite number, a
marker of developmental stage (Figure 4C). The data
showed a slight trend - which was not statistically signifi-
cant - toward Gpcl-/- embryos being delayed by about 1
somite (at E8.5, wild type = 11.5 + 2.8 and mutant = 10.3
+3.2; at E9.5, wild type = 22.0 + 2.4 and mutant = 21.2 +
2.4). Even taking such a trend into account, regression
analysis showed that >70% of the brain size difference at
E9.5 is independent of somite number (note the down-

ward shift of the regression line at E9.5). These data sug-
gest that, between E8.5 and E9.5, Gpc1 plays a specific and
important role in nervous system growth.

To test whether that role involves regulation of cell prolif-
eration, we used phospho-histone H3 immunohisto-
chemistry to quantify the density of cells in M-phase
(Figure 4D-H). If one considers the early central nervous
system as a mass of cycling cells undergoing exponential
expansion, with a typical cell cycle time of about 8 hours
[41,42], then in order to produce a 20% reduction in cell
mass over the course of one day of development (and no
further decrease thereafter), one would need to lengthen
the cell cycle during that day by about 7%. Thus, in Gpcl-
/- embryos, we initially expected to see up to an approxi-
mately 7% decrease in mitotic labeling index at E8.5, fol-
lowed by a return to normal on the following day.

Interestingly, we observed a larger and longer-lasting
change in labeling index. For example, at E9.5, when we
expected proliferation to have returned to wild-type lev-
els, the labeling index in mutant brain neuroepithelium
was decreased by 30% (Figure 4G; P < 0.001) The effect
was specific to the neuroepithelial cells of these embryos
(Additional file 3), and did eventually disappear (by
E11.5; Figure 4H). We considered the possibility that the
larger-than expected drop in proliferation in Gpcl-/-
embryos was being offset by decreased cell death, but this
was not supported by direct measurements. TUNEL stain-
ing showed that dying cells are not particularly abundant
in the wild-type central nervous system at these stages,
and if anything, displayed a trend (not statistically signif-
icant) toward being more abundant in the mutant, not
less. A likely explanation for the delayed and larger-than-
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Influences of other glypicans on brain size regulation. (A-J) Whole-mount in situ hybridization for Gpc2, Gpc3, Gpc4,
Gpc5 and Gpcé in E9.5 wild-type (A-E) and Gpcl-- (F-J) mouse embryos suggests that there is no significant upregulation of
other glypicans in response to Gpc/ loss. (K, L) Wet weights of fresh adult brains from allelic combinations of Gpc /- with Gpc2-
(K) and Gpcl- with Gpc4'a<Z (L). Genotypes are as indicated. The insertion site of the Gpc4-2<Z gene-trap allele has not been
mapped, precluding development of an allele-specific PCR reaction to distinguish Gpc4-2<Z/* from Gpc4lacZ/lacZ animals. How-
ever, since Gpc4 is located on the X chromosome, males with a single LacZ allele are unambiguously hemizygous. Thus, the
comparison in (L) is between wild-type (both sexes) and LacZ+ males. Note that Gpc2-- brains are not significantly different in
size from wild type, nor does loss of Gpc2 enhance the phenotype of the Gpcl-- mouse. In contrast, the Gpc4'2<Z mutation sig-
nificantly enhances the Gpcl-- phenotype (* and **P < 0.005). N = 7 for Gpcl**;Gpc2**, N = 5 for Gpcl*'*;Gpc2--, N = 3 for
Gpcl--Gpe2+*, N = 3 for Gpcl--Gpc2--, N = 2 for Gpcl*'*;Gpc4** and N = 4 for Gpc|*/+;Gpc4*/Y, N = 3 for Gpcl--;Gpc4*/* and
N = 8 for Gpcl--,Gpc4*’Y, N = 14 for Gpcl**;Gpc4-a<z’Y, N = 9 for Gpcl--;Gpc4tacZ/Y,

expected drop in neural labeling index became apparent
later on, after more information about the probable
mechanism of GPC1 action was obtained (see below).

Redundancy versus compensation within the glypican
family

Six structurally similar glypicans are encoded by the mam-
malian genome. A possible explanation for the relatively
mild phenotype in Gpcl-/-mutants would be the participa-
tion of other glypicans in the regulation of early embry-
onic neural proliferation. In fact, Gpc2, Gpc3, Gpc4, Gpc5,
and Gpc6 can all be detected in E8.5 and E9.5 embryos,

although Gpc3 expression is excluded from most of the
nervous system, and Gpc5 is not strongly expressed in
brain until later stages (Figure 5A-E) [30,36,40,43]. Inter-
estingly, the expression levels of Glypicans 2 to 6, as
judged by whole mount in situ hybridization, were not
noticeably altered in Gpcl7/- mutants (Figure 5A-]), sug-
gesting that there is little or no compensatory up-regula-
tion of other glypicans in response to loss of Gpcl. Levels
of Gpc4 RNA were also measured by quantitative RT-PCR
and were unchanged in Gpc1/- mice (data not shown).
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Figure 6 (see previous page)

Loss of Gpcl results in weakened fibroblast growth factor (FGF) signaling and premature neuronal differentia-
tion in brain. (A-D) In situ hybridization for Pyst/. (E-H) In situ hybridization for Sprouty 2 (Spry2). Both are markers of FGF
signaling and only for Spry2 was a noticeable change observed between genotypes, with apparent reduced expression in Gpcl-/
-embryos at both embryonic day (E)8.5 and E9.5. (I) Real-time quantitative RT-PCR of Pyst/, Spry! (a third FGF-target gene)
and Spry2 from RNA isolated from E9.5 wild-type and Gpcl--forebrains. The data imply a significant reduction (32.5%) in Spry2
message levels in the Gpcl mutant (*P < 0.01), and a possible reduction in Spry!. (J) Erk enzymatic activity was measured by in
vitro phosphorylation in E9.5 dorsal forebrain explants from Gpcl*/* and Gpcl-- embryos. Such explants display a high level of
basal (unstimulated) Erk activity, presumably due to the actions of endogenous growth factors. Erk activity was found to be
41% lower in mutant tissue than in wild type (*P < 0.005; units are cpm x 104). (K, L) Sagittal sections of E9.5 Gpcl** (K) and
Gpcl-- (L) embryos were immunostained with Tujl (red), a marker for postmitotic neurons, and counterstained with the
nuclear marker bizbenzamide (blue). (K', L") Enlarged images from white boxes in (K) and (L), corresponding to similar loca-
tions in the anterior midbrain. Note the greater density of Tujl-positive cells in the mutant midbrain. White arrowheads in (K,
L) point to the ventral forebrain, where virtually no Tujl-positive cells are found in the wild-type, but several are present in the
Gpcl--brain. (M, N) Numbers of Tujl-positive cells within the forebrain (FB) and midbrain (MB) were totaled over serial sec-
tions of whole embryos at E8.5 (M) and E9.5 (N). Note the >2-fold increase in Tujl-positive cells in Gpc!-- brains at E9.5. In
contrast, no significant difference is observed at E8.5. At E9.5, N = 7 for +/+ and N = 4 for -/-; at E8.5, N = 4 for each genotype.

*P < 0.005.

To test for redundancy between Gpcl and the other glypi-
cans that are expressed in early embryonic brain, we gen-
erated double mutants with Gpc2 and Gpc4 (mutants in
Gpco6, the third glypican that is strongly expressed in early
embryonic brain, have not yet been produced). For Gpc2
we used a targeted allele that, when homozygous, pro-
duces phenotypically normal mice with a complete loss of
Gpc2 protein (S Saunders and ADL, unpublished data). As
shown in Figure 5K, the brains of Gpc2/- mice are not
reduced in size, and the brains of Gpc1+/-;Gpc2-/- double
mutants are no smaller than those of Gpc1-/- mice.

In contrast, when compound mutants were made
between Gpcl and a gene-trap allele of Gpc4 (Gpc4lacz),
brain size appeared synergistically reduced (Figure 5L).
This experiment may underestimate the contribution of
Gpc4, since the Gpc4laZ allele is very likely not null
(unpublished observations). Thus, within the limits of
what can be assessed using existing mutants, Gpcl appears
to act redundantly with at least Gpc4 in controlling brain
size.

Evidence for impairment of FGF signaling in the early Gpcl
mutant embryo

Numerous growth factor and morphogen signaling path-
ways have been implicated in the control of brain growth
and development [44-47]. Many of these pathways -
including those mediated by Hedgehogs, Wnts, BMPs,
and FGFs - are influenced by HSPGs in at least some devel-
opmental contexts [1,5,48,49]. To screen for disruption of
these pathways in Gpcl7/- mice, we performed in situ
hybridization at E8.5 and E9.5 for known downstream
markers or reporter genes.

Although we saw no significant differences between wild-
type and mutant embryos at these stages in the expression
patterns of marker genes for Sonic hedgehog (Shh), BMP
and Wnt signaling (Additional file 4), the data suggested
that FGF signaling was potentially attenuated. For one
marker of FGF signaling - the mitogen-activated protein
(MAP) kinase phosphatase Pyst1 (also known as Mkp3
and Dusp6) - we observed no significant change in the
Gpcl-/- mouse (Figure 6A-D), but for a second marker -
Sprouty 2 (Spry2) - we noticed a consistent, yet transient,
reduction in expression. Specifically, Spry2 in situ hybridi-
zation was consistently weaker in Gpc1-/-brains at E8.5 to
E9.5 (Figure 6E-H), but returned to a near-normal level by
E10.25 (Additional file 5). To verify this result, we turned
to quantitative RT-PCR. As shown in Figure 61, there was
a 40% reduction in Spry2 mRNA in Gpcl-/-brains at E9.5,
with some reduction in Spryl mRNA (also a FGF target
gene) as well. In contrast, and in agreement with the data
from in situ hybridization, Pyst1 levels were unchanged.

To examine FGF signaling more directly, we produced
short-term E9.5 dorsal forebrain explant cultures from
wild-type and Gpcl-/- embryos, and measured the enzy-
matic activity of extracellular regulated kinase (ERK) MAP
kinase. As shown in Figure 6], wild-type explants exhib-
ited a high basal level of ERK activity, suggesting a high
degree of endogenous growth factor signaling within the
explant. In contrast, Gpcl7/- explants exhibited 41% less
ERK activity under the same conditions. In response to
exogenous FGF2, wild-type explants displayed only a
small additional increase in ERK activity, possibly because
endogenous signaling was so high. We consistently
observed that the exogenous FGF response was even lower
in Gpcl-/- explants, but due to the small size of the FGF
effect we were unable to establish statistical significance
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for this conclusion (data not shown). Overall, the data
strongly suggest that Gpcl deficiency diminishes the
response of cells of the early nervous system to FGFs.

Loss of glypican-1 results in premature differentiation of
postmitotic neurons

It is widely reported that FGFs promote the proliferation
of neural progenitor cells [50-59]. In most cases, FGFs
appear not to act by affecting cell cycle kinetics, but by
increasing the probability that the progeny of dividing
cells remain in the cell cycle instead of differentiating
(that is, FGFs suppress cell cycle exit). Such a mechanism
of FGF action has been established, for example, in the
cerebral cortex, the midbrain, the olfactory epithelium
and the telencephalic subventricular zone
[50,52,53,55,58]. Indeed, even in non-neural tissues such
as muscle, preventing cell cycle exit seems to be the central
mode of action of FGF [60,61].

If impairment of FGF signaling is the primary mechanism
by which Gpc1 deficiency reduces brain size, we reasoned
that Gpcl-deficient embryos should exhibit accelerated
cell cycle exit and, as a consequence, premature neuronal
differentiation. Indeed, this turned out to be the case. As
shown in Figure 6K-N, higher than normal numbers of
TuJ 1+ neurons were detected in the brains of early Gpc1-/-
embryos. This effect was especially pronounced at E9.5,
when there were over twice as many differentiated neu-
rons in the fore- and midbrains of Gpcl mutants as in
wild-type animals (P < 0.005). To confirm that surplus
TuJ1+ neurons were the progeny of cells that had recently
undergone cell division, we pulsed embryos at E8.5 with
the S-phase label 5-bromo-2'-deoxyuridine (BrdU), and
one day later (E9.5) counted the number of TuJ1+/BrdU+
cells in the developing brain. In wild-type embryos we
observed an average of 50 + 3 such cells per mm2, whereas
in Gpcl-/-embryos we observed three times as many (150
+49; P < 0.05).

Not only do these results support the conclusion that FGF
signaling is the main target of Gpcl in the early central
nervous system, they also explain the unexpectedly large,
prolonged decreases in mitotic labeling index in Gpcl
mutant embryos (Figure 4G). This is because the labeling
index represents the ratio of cells in M phase to total cells.
When cells leave the cell cycle, they no longer affect the
numerator of this ratio, but still contribute to its denomi-
nator, thereby causing an alteration in the labeling index
that outlasts, for a period of time, any actual disturbance
in the proliferative or differentiative behavior of cells (for
a quantitative treatment of this point, see the Supplemen-
tal Appendix in Additional file 6). In short, the labeling
index data in Figure 4G,H correspond well with the
expected consequences of a temporary diminution in
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activity of a factor, such as FGF, that suppresses the differ-
entiation of neuronal progenitors.

Glypican-I acts through Fgfl7

Several FGF family members have been implicated in
brain development, with the subfamily formed by Fgf8,
Fgf17 and Fgf18 having been shown to be especially
important at early embryonic stages [44,45,47,62-64].
Fgf8, the most intensively studied of the group, plays crit-
ical roles in brain patterning and morphogenesis, and it
has been suggested that some of the phenotypes in the
Nes-Ext1m brain are the result of impaired Fgf8 function
[39]. However, there is substantial overlap in expression
of all three of these Fgfs, which also share similar receptor
binding properties, and are all thought to control neural
proliferation [65-67].

In initial studies of compound mutants involving Gpcl-
and Fgf8m (a hypomorphic allele of Fgf8), we failed to
observe significant genetic interaction (that is, a mutant
allele of Fgf8 did not further reduce brain weight in a Gpc1
mutant; data not shown). In contrast, we were struck by
similarities between the reported defects in anterior cere-
bellar patterning in Fgf17-/- mice [66] and those reported
here for Gpcl mutants (Figure 3C-F). We therefore gener-
ated and analyzed a set of adult Gpc1-Fgf17- compound
mutants (Figure 7).

Representative midline cerebellar morphologies of ani-
mals of various compound genotypes are shown in Figure
7A-E. Figure 7F summarizes the distributions of brain
weights among the entire collection, by genotype. The
data clearly show that, as with Gpcl, loss of wild-type
Fgf17 alleles leads to a progressive reduction in brain size
and anterior cerebellar defects. Moreover, in animals that
possessed either one or two functional Fgf17 alleles, the
additional loss of one or two Gpc1 alleles led to a further
reduction in brain size. However, in animals null for
Fgf17, loss of Gpcl had no significant phenotypic effect,
either on brain size or cerebellar morphology. Complete
dependence of the Gpcl phenotype on the presence of a
functional Fgf17 gene provides strong evidence that Fgf17
is, if not the only FGF through which Gpcl1 acts, certainly
among the most important, at least with respect to the
control of brain size and cerebellar patterning.

Discussion

The data presented here establish that Gpc1 plays a role in
controlling brain size by regulating the behavior of pro-
genitor cells during early brain development. Although
the quantitative effect of Gpcl loss is modest - a 20%
decrease in cell number - it is highly significant when
compared to normal variation in brain size within genet-
ically homogeneous mice (Figure 2). The effect appears to
be due to a shift in the balance of progenitor cell prolifer-
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Gpcl phenotypes require Fgfl7. Compound Gpcl/Fgfl 7 genotypes were produced by interbreeding Gpcl*-;Fgfl 7+ mice.
(A-E) Nissl-stained mid-sagittal sections through the cerebella of adult compound mutants. Red arrowheads mark the ante-
rior-most lobe (lobe 1), which disappears in both Gpcl--and Fgfl 7-- animals. Red arrows mark the fusion of lobes Ill and IV, a
phenotype observed in Fgfl 7-- mice. Note that the Gpcl--;Fgfl 7-- phenotype is no more severe than the single Fgfl 7~ pheno-
type. (F) Fresh brain weights of adult compound mutants. Genotypes for each category are as indicated; 'N' refers to the
number of animals obtained of each genotype. The data show that, on their own, the presence of either one or two copies of
mutant alleles for either Gpcl or Fgfl 7 progressively reduces brain size. When animals are null for Fgfl7, the presence of
mutant Gpc/ alleles has no significant effect (*P < 0.005; **P < 0.001; by Student's t-test).

ation versus differentiation over the course of approxi-
mately one day of development - from E8.5 to E9.5
(Figures 4 and 6). Diminished signaling by FGFs, but not
other growth factors, could be demonstrated at around
this time period in Gpcl-/-mice (Figure 6). Genetic epista-
sis experiments strongly suggested that reduced Fgf17 sig-
naling accounts for most or all of the Gpcl mutant
phenotypes observed here.

The transient and modest effects of Gpcl loss raised the
possibility of either compensation by, or redundancy
with, other HSPGs, and although no evidence for com-
pensatory up-regulation of other core proteins was

obtained, studies with Gpc1-;Gpc4laZ double mutants sug-
gested that Gpcl and Gpc4 may have at least partially
overlapping functions in controlling brain size (Figure 5).
This idea is lent further support by recent studies in Xeno-
pus, in which morpholino-mediated knockdown of Gpc4
led to a reduction in size of dorsal forebrain structures
[68].

It is noteworthy that Gpc1-/- mice failed to display any of
the severe developmental phenotypes reported for the
Nestin1-Cre mediated conditional inactivation of ExtI,
which produces a mouse in which all heparan sulfate is
eliminated from the brain from about E10 onward. The
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phenotypes of the NesI-Ext1™! mouse include specific
hypoplasia of the cerebral hemispheres, absence of the
cerebellum and olfactory bulbs, and loss of certain mid-
line commissural tracts. It is possible that the mild deficits
in the anterior cerebellum that we observed in the Gpc1-/-
mouse are related to the cerebellar agenesis seen in the
Nes1-Ext1™i!l mouse. Interestingly, even when double
mutant mice were made between Gpcl-and Gpc4ta<Z (Fig-
ure 5), Gpc2- (Figure 5) or Gpc5- (YHJ, ADL and S Saun-
ders, unpublished observations), Nes1-Ext1™! phenotypes
were not observed. It may be that the combined loss of
function of multiple glypicans, and/or glypicans as well as
syndecans (the other major family of HSPGs), is required
to substantially eliminate heparan sulfate function in
brain development.

The growth factor families that have been shown to utilize
HSPGs as co-receptors include FGFs, BMPs, Hedgehogs
and Wnts [1,3,5,44,69-73] - all of which play important
roles during early brain development [74-79]. It was sur-
prising, therefore, that evidence only for reduced FGF sig-
naling was obtained in the Gpcl-- mouse. Such evidence
included reduced expression of FGF target genes,
decreased basal Erk activation, and premature neuronal
differentiation (Figure 6), as well as genetic epistasis
between Gpcl and Fgf17 (Figure 7). Several of the pheno-
types in the Nes1-Ext1m! mouse are also consistent with
reduced FGF signaling, including cerebellar and olfactory
bulb agenesis and cerebral cortical hypoplasia
[64,66,80,81]. Diminished FGF signaling has also been
implicated in the lens phenotypes in Ndst1 mutant mice
(which produce aberrantly sulfated heparan sulfate
[82,83]). These observations suggest that, in vivo, FGF sig-
naling may be an especially sensitive indicator of deficits
in HSPG function.

A fascinating aspect of the Gpc1 mutant phenotype is that
the brain weight of heterozygous animals falls halfway
between that of wild type and homozygous mutants (Fig-
ure 2). This implies that the amount of Gpc1 expressed by
cells influences, in a continuous fashion, the level of
growth factor signaling that cells perceive. In other words,
Gpcl may not merely be necessary for growth factor sign-
aling, but a quantitative regulator of the 'gain' of signal-
ing. Accordingly, regulation of Gpcl expression may be an
important part of the control circuitry that keeps brain
size so tightly regulated in mammals [37,84].

Recent work suggests a similar quantitative role - albeit in
the opposite direction - for Gpc3 [85]. Mouse Gpc3
mutants are known to display marked pre- and postnatal
overgrowth of many organs, phenocopying Simpson
Golabi Behmel syndrome (a syndrome caused by muta-
tions in human GPC3 [8,9,86]). Because Gpc3 is on the X
chromosome, gene dosage effects are not observable with
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null alleles, but studies of naturally occurring polymor-
phisms in the Gpc3 regulatory region have recently
implied that quantitative variation in the level of Gpc3
expression directly (negatively) controls body size [85].
Even though the molecular mechanism of somatic growth
inhibition by Gpc3 is likely to differ from the mechanism
of brain growth promotion by Gpcl, the implication of
both glypicans in quantitative regulation of size is strik-
ing. Intriguingly, a variety of studies in Drosophila also link
invertebrate glypicans to organ size control [87-89].

The present study leaves unresolved the role that glypicans
play in axons and nerve terminals, where Gpcl and Gpc2
are especially abundant [36]. The absence of obvious
defects in axonal pathways in the Gpcl-/- mouse suggests
that these molecules may play more of a role in synaptic
physiology than in axonal growth or guidance. Certainly,
evidence for the participation of syndecan-2 and synde-
can-3 in synapse formation [14,90-92], as well as recent
work on the Drosophila nervous system [89,93-95], sug-
gests that HSPGs may play a variety of as yet unappreci-
ated roles in basic neurophysiology. To this end, it is
intriguing that recent genome-wide association studies in
man have identified both GPC1 and FGFR2 (which
encodes a major FGF receptor of the brain) as members of
a small handful of genetic loci that correlate with risk of
schizophrenia [96,97], a psychiatric disorder also associ-
ated with a small, but significant, reduction in brain vol-
ume [98,99]. Clearly, a detailed behavioral and
neurophysiological examination of the Gpcl mutant
mouse seems warranted in the future.

Conclusion

Cell-surface HSPGs are critical for growth and patterning
in numerous tissues and organ systems, presumably as a
consequence of their actions as growth factor co-recep-
tors. Here we show that Gpcl controls the size of the
mammalian brain through an unexpectedly specific
mechanism: regulation of the proliferation/differentia-
tion behavior of progenitor cells during a very early stage
of neurogenesis. We provide evidence that this action is
mediated through regulation of Fgf17 signaling, and fur-
ther show that Gpcl's effects are gene-dosage dependent.
The data support the view that glypicans, and possibly
HSPGs in general, serve as quantitative regulators of the
gain of growth factor signaling during neural develop-
ment.

Materials and methods

Mice

Gpcl- heterozygous mutants were bred extensively onto
CD1 and C57BL/6 backgrounds prior to breeding inter se
to produce homozygous mutant animals. PCR primers
specific for the Gpcl- allele were 5'-AGCCGGCTTTTGTT-
GTCTC-3' and 5'-CACGAGTGTGCTAGGATAGGG-3'".
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Primers specific for the Gpcl wild-type allele were 5'-
CAGCGAAGTCCGCCAGAT-3' and 5'-CAGACCIC-
CCGAGTGCTAGG-3'.

The following additional mutant alleles were used in this
study: gene-trap alleles of Gpc1 (GPC1lacZ; Baygenomics
ID GST062 San Francisco, CA, USA) and Gpc4 (GPC4lacZ;
Baygenomics ID Ex194) [100,101]; a targeted null muta-
tion in Gpc2 (S Saunders and ADL, unpublished); Fgf2
(Jackson Laboratory, Bar Harbor, Maine, USA), a hypo-
morphic allele of Fgf8 (Fgf8e [102]), Fgf17 (|[74]) and a
LacZ-reporter of canonical Wnt signaling (Bat-gal [103]).
Wild type CD1 and C57BL/6 mice were from Charles
River (San Diego, CA, USA) Genotypes were determined
by PCR of tail DNA.

For production of staged embryos, timed matings were
used and noon of the day of vaginal plug was considered
as E0.5. At early embryonic stages, more precise staging
was obtained from somite number. To obtain BrdU-
labeled embryos, pregnant mice were injected intraperito-
neally with 50 pg of BrdU (B5002; Sigma-Aldrich St.
Louis, MO, USA)per gram body weight and embryos were
collected 24 hours later.

Mouse colonies were maintained, and all animal experi-
mentation conducted, in accordance with the policies and
guidelines of the Institutional Animal Care and Use Com-
mittee (IACUC) of the University of California, Irvine.
(IACUC protocol number 1998-1656).

Histology and histochemistry

Adult brains were fast-frozen in 2-methyl-butane prior to
cryomicrotome sectioning at 20 um. Embryos were dis-
sected in cold phosphate-buffered saline (PBS), fixed in
4% paraformaldehyde in PBS at 4°C overnight, cryopro-
tected in 30% sucrose in PBS at 4°C, and cryomicrotome
sectioned at 10 to 20 pm. Sections were stored at -20°C
prior to immunohistochemistry or Cresyl-Violet staining.
For BrdU staining, cryosections were treated with 2 M HCI
for 1 hour at 37°C. Sections were then blocked with 5%
goat serum +10% bovine serum albumin/PBS +0.2%
Tween20 and incubated with primary antibody diluted in
blocking solution at 4°C overnight (anti-Gpcl [27],
1:500; rabbit anti-phosphohistone H3 (anti-PHH3; Milli-
pore, Billerica, MA, USA, 5 nug/ml, 1:500; Tuj1l (R&D sys-
tems, 1:1,000, Minneapolis, MN, USA); anti-BrdU
(Abcam, 1:100, Cambridge, MA, USA). Secondary anti-
bodies (alexaFluor goat anti-rabbit IgG, 2 pg/ml alex-
aFluor goat anti-mouse IgG, 10 pg/ml; Cy3-goat anti
mouse, 7 ug/ml (Jackson Immunoresearch, West Grove,
PA, USA); or Cy2-goat anti rat, 14 pg/ml (Jackson Immu-
noresearch)) were applied for 1 hour at room tempera-
ture. For quantification of apoptosis, fluorescent TUNEL
(terminal deoxynucleotidyl transferase dUTP nick end
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labeling) assays (Apotag Kit, Serologicals, Norcross, GA,
USA) were performed on cyrosections. Hoechst33258 was
used at 2 pg/ml for nuclear counterstaining. Fluorescence
images were analyzed with a Ziss Axiovert S100 micro-
scope and Hamamatsu C4742-95 digital camera. Whole-
mount staining for beta-galactosidase activity was
performed as described in [104].

In situ hybridization

E8.5-E9.5 embryos, fixed by immersion in 4% parafor-
maldehyde, were gradually dehydrated in methanol and
stored in 100% methanol at -20° C. Wholemount RNA in
situ hybridization was performed as described [105] with
probes synthesized using digoxigenin-labeled NTP mix
(Roche, Indianapolis, IN, USA). Probes for glypicans
(Glypicans 1 to 6) were obtained by RT-PCR from E13.5
brain total RNA, using the following primer pairs, and
subcloned into the PCRII-TOPO vector (Invitrogen,
Carlsbad, CA, USA): Gpcl, 5'-GCTACATCTCCATCTTC-
CITGAC-3' and 5'-AACACACATTATCCACTGACACC-3/;
Gpe2, 5'-AGTCTGGCGAGGGGTITAGAT-3' and 5'-GGCT-
ACATTGAGGCAGAAGC-3'; Gpc3, 5'-GGATGGTGAAAGT-
GAAGAATCAAC-3' and 5'-
GAGAGAAAGAGAAAAGAGGGAAAC-3'; Gpc4, 5'-CAT-

GGCACGCTITAGGCITGCTCGC-3' and 5'-TGGTT-
GCACTGTTCGCTGACCACG-3'; Gpc5, 5'-
CGCCAGGATGTTAGTCCATT-3' and 5'-AATTTCT-

GCCCATTGAGGTG-3";  Gpc6, 5'-GCTGTGTATTCTT-
GCTCTCTCCGGG-3' and 5'-
GTACAGCATCCCGTAGGTCCGGAC-3'.

The following additional RNA probes were used: Pax6
(335 to 595 bp MN_013627), Spry2 (probe used in
[106]), Pyst1 (probe used in [107]), Ptc1 (probe used in
[108]), Msx1 (EcoRI fragment from IMAGE clone
903377). Controls for in situ hybridization consisted of
sense probes derived from the same DNA fragments.

Measurement of brain size and DNA content

Postnatal and adult brains were freshly dissected. After
removal of olfactory bulbs and remaining spinal cord (at
the level of the posterior margin of the cerebellum),
brains were immediately weighed on a laboratory scale.

Images of fresh embryos were collected using a Leica
MZFLIII stereomicroscope and a SPOT camera (Diagnos-
tic Instruments, Inc. Sterling Heights, MI, USA). For
embryos at E11.5 or older, brain height, depth and width
were separately measured from lateral and frontal images
(Additional file 2), and multiplied to produce a volume
estimate. For E8.5 and E9.5 embryos, measurements of
area were obtained from perimeter tracings of lateral
views using Image J analysis software [109]. At these
stages the central nervous system comprises the majority
of head tissue, so such tracings included the entire head,

Page 14 of 19

(page number not for citation purposes)



Neural Development 2009, 4:33

stopping ventrally at the rostral border of the first
branchial arch, and dorsally at the top of mesencephalon.
Volume was then estimated as area3/2. In some cases, vol-
ume was also estimated by the procedures outlined above
for older embryos, and qualitatively similar results were
obtained.

DNA content in brain homogenates was measured by
enhancement of bisbenzimid fluorescence at 458 nm, as
described by Labarca and Paigen [38]. A linear standard
curve (1 to 10 pg/ml) was obtained using salmon sperm
DNA (Invitrogen).

Quantitative RT-PCR

Forebrain vesicles of E9.5 and E8.5 wild-type and mutant
mice were dissected in ice-cold PBS, and RNA was isolated
and column purified (Aurum Total RNA Mini Kit, Bio-
Rad, Herculeus, CA, USA) according to the manufacturer's
instructions. cDNA was generated by reverse transcription
with a mixture of oligo dT and random hexamers (Super-
script First-Strand Synthesis kit, Invitrogen). PCR quality
controls, experimental runs and statistical methods were
performed as described [110,111]. Quantification of total
mRNA expression was performed with an Opticon System
(MJ Systems CFD-3200, Calgary, Denver, USA) and SYBR-
Green (Bio-Rad).

All measurements were normalized to values for 18S RNA
in the same samples. All cDNA samples were validated for
reverse transcription reaction efficiency and minimal
genomic DNA contamination (cDNA/genomic target
ratio >103) for 40 cycles in duplicates. Average of dupli-
cated cycle threshold (Ct) values were normalized as ACt
(Ctgene of interest ~ Ctreference(lss))' Relative levels were con-
verted using the 2-44Ct method: AACt = ACt,,iant - ACt,i14.
wpe [112] Averages of duplicate Ct, normalized ACt, AACt
and relative level 2-4ACt and standard errors were calcu-
lated using Microsoft Excel.

Measurement of Erk activity in embryonic explant cultures
E9.5 dorsal telencephalon explants were isolated and cul-
tured as previously described [110]. After 1 hour of incu-
bation at 37°C, FGF2 (R&D Systems) was added at the
concentrations indicated for 15 minutes. Explants were
briefly washed with 1x PBS and individually homoge-
nized in lysis buffer (1 mM EGTA, 1% Triton X-100, 150
mM NaCl, 50 mM Tris-Cl pH7.4, 1% NP40, 1 ug/ml phe-
nylmethylsulphonyl fluoride (PMSF), 1 ng/ml leupeptin,
1 pg/ml pepstatin, 1 pg/ml aprotinin, 25 pg/ml N-ethyl-
maleimide (NEM), and phosphatase inhibitors (1 mM
NaF, 1 mM Na;VO,)) with a disposable pestle (Knotes
Scientific, Vineland, NJ, USA) Lysed samples were stored
at -80°C until use. Erk activity was quantified using an in
vitro phosphorylation assay (MAP Kinase/Erk Assay kit;
Upstate Biotechnology) following the manufacturer's
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instructions, with or without the 20 uM Erk inhibitor
FR180204 (Calbiochem, Gibbstownm, NJ, USA) treat-
ment for 10 minutes prior to the assay. Values in the pres-
ence of FR180204 were taken to represent non-ERK
phosphorylation activity, and subtracted from each data
point. Data were normalized to protein concentration
determined by a bicinchoninic acid (BCA) assay [113].

Subcellular fractionation and analysis of proteoglycan
content

Adult brains were dissected in ice-cold PBS and immedi-
ately homogenized. to obtain membrane and soluble frac-
tions as described [114]. For SDS-PAGE analysis, samples
prepared in this way were digested for 30 minutes at 37°C
with Heparinase I1I or with Heparinase III plus Chondroi-
tinase ABC (all used at 1.5 U/mg of protein; both enzymes
were purchased from Seikagaku Corp., Tokyo, Japan)
along with a proteinase inhibitor mixture (10 pg/ml pep-
statin A, 20 ug/ml leupeptin, 2.5 mg/ml NEM, and PMSF
in 50 mM Tris-hydroxyaminomethane, 15 mM phos-
phoric acid, pH7.3). Digested samples were boiled for 10
minutes in SDS-PAGE sample buffer and loaded at 50 pg
protein per lane onto 7.5% SDS-polyacrylamide gels, and
subjected to electrophoresis. Gels were transferred to
PVDF membrane (Millipore, Billerica, MA, USA) and
probed with rabbit anti-glypican-1 (1:3,000) antibody or
mouse 3G10 monoclonal antibody (1:2,000; USBiologi-
cal, Swampscott, MA, USA). Samples without enzyme
treatment, or subjected to single enzyme treatment, were
used where indicated. Blots were incubated with horse-
radish peroxidase-conjugated goat anti-rabbit or donkey
anti-mouse antibody, as appropriate, and visualized using
enhanced chemiluminescence.
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Additional material

Additional file 1

Morphometric comparison of wild-type and Gpcl-/- forebrains. Freshly
dissected adult brains were photographed from the dorsal surface. Tracings
of the outline of the forebrain hemispheres were digitized and each curve
converted to a series of points, in intervals of 0.03 radians, on a polar plot
centered on its centroid. For each genotype, the curves from different
brains were overlayed and rotated so that the medial edges of each tracing
(which are relatively straight) were optimally aligned. (A) An example
from the right hemisphere of nine mutant mice. An average curve was
generated by calculating the average distance from the centroid for the
family of curves at each angular position. (B) Curves representing one
standard deviation above and below the average were similarly produced.
(C) A single curve depicting the ratio of the average mutant and wild-type
values at each angular position was then generated, and error bars around
this curve were calculated from the square root of the sum of the squares
of the relative errors (standard deviation/mean) for the two mutant and
wild-type average curves; the comparison of nine mutant and four wild-
type right hemispheres using this process is shown. The null hypothesis -
that mutant and wild-type forebrains are identical in shape - implies that
the ratio curve should be a perfect circle (that is, distance to the centroid
for mutant and wild-type should differ by the same proportion at every
angular position). As shown in (C), a circle (r = 0.937) fit within the
error bars at every angular position, implying that mutant forebrains are
approximately 6.3% smaller in linear dimension, with no significant dif-
ference in forebrain shape. Note that a 6.3% decrease in linear dimension
is consistent with an 18% decrease in volume, comparable to the observed
15.5% decrease in total brain weight (Figure 2).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-4-33-S1.pdf]

Additional file 2

Approaches used for estimation of brain volumes of embryos.
Approaches used for estimation of brain volumes of (A) E8.5, (B) E9.5
and (C) E11.5 embryos. Outlines of the primarily neural regions of the
head were traced on lateral images of E8.5 to E9.5 embryos, and the
enclosed area calculated. At E11.5, separate measurements were made of
depth (green line in (C), running from the midbrain-hindbrain boundary
(MHB) to the upper nasal-facial junction), height (blue line in (C) con-
necting the midbrain-forebrain boundary (MFB) to the upper jaw), and
width (interocular distance, measured from a frontal view; not shown).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-4-33-S2.pdf]

Additional file 3

Evaluation of cell proliferation in wild-type (+/+) and Gpcl mutant
(-/-) embryos at E9.5. (A-F) Sagittal sections of E9.5 embryos were
immunostained for phosphohistone H3 (PHH3) (A, D), counterstained
with bizbenzamide (B, E) and the two images merged (C,F). As quanti-
fied in Figure 4G, H, there are fewer PHH3 labeled cells in the Gpcl--
neuroepithelium than in the wild type. (G) However, as shown here, the
PHH3 labeling index specifically in non-neuroepithelial areas of the head
is not significantly different between Gpcl-/- and wild-type embryos.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-4-33-S3.pdf]
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Additional file 4

Lack of apparent difference in Sonic hedgehog, BMP and Wnt signal
intensity in Gpcl7/- during early stages of brain development. (A-])
Whole mount in situ hybridization and reporter gene expression in E8.5
and E9.5 wild type (+/+) and Gpcl-/- (-/-) embryos were used to assess
levels and distribution of activity of the Hedgehog, BMP and Wnt signal-
ing pathways, all of which have been reported to be influenced by HSPGs.
(A-D) In situ hybridization for Patched1, a marker of Hedgehog signal-
ing. (E-H) In situ hybridization for Msx1, a marker for BMP signaling.
Those small differences in staining intensity that are visible in these
images (for example, in the anterior hindbrain) were not consistent find-
ings, but reflect a high degree of embryo-to-embryo variability in Msx1
whole mount in situ hybridization. (I-]) f-galactosidase activity in
embryos crossed onto a BAT-gal background, in which LacZ expression
reports canonical Wnt signaling.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-4-33-S4.pdf]

Additional file 5

Whole mount in situ hybridization for Spry2 at E10.25. When com-
pared with Figure 6E-H, the data suggest that Spry2 expression returns to
near-normal in Gpcl7/- embryos by E10.25. These observations are con-
sistent with the view that the disruption of Fgf signaling in Gpc1l+
embryos is transient.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1749-
8104-4-33-S5.pdf]

Additional file 6

Supplemental appendix: models for the effect of Gpcl deficiency on
early brain development. Supplemental appendix: models for the effect
of Gpc1 deficiency on early brain development

Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-4-33-S6.pdf]
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