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Background
The mammalian cerebellum develops from neural pro-
genitors within dorsal thombomere 1 (r1) just caudal to

Abstract

Background: During the embryonic development of the cerebellum, neurons are produced from
progenitor cells located along a ventricular zone within dorsal rhombomere | that extends caudally
to the roof plate of the fourth ventricle. The apposition of the caudal neuroepithelium and roof
plate results in a unique inductive region termed the cerebellar rhombic lip, which gives rise to
granule cell precursors and other glutamatergic neuronal lineages. Recently, we and others have
shown that, at early embryonic stages prior to the emergence of granule cell precursors (El2),
waves of neurogenesis in the cerebellar rhombic lip produce specific hindbrain nuclei followed by
deep cerebellar neurons. How the induction of rhombic lip-derived neurons from cerebellar
progenitors is regulated during this phase of cerebellar development to produce these temporally
discrete neuronal populations while maintaining a progenitor pool for subsequent neurogenesis is
not known.

Results: Employing both gain- and loss-of-function methods, we find that Notch| signaling in the
cerebellar primordium regulates the responsiveness of progenitor cells to bone morphogenetic
proteins (BMPs) secreted from the roof plate that stimulate the production of rhombic lip-derived
neurons. In the absence of Notch|, cerebellar progenitors are depleted during the early production
of hindbrain neurons, resulting in a severe decrease in the deep cerebellar nuclei that are normally
born subsequently. Mechanistically, we demonstrate that Notch| activity prevents the induction of
Math| by antagonizing the BMP receptor-signaling pathway at the level of Msx2 expression.

Conclusion: Our results provide a mechanism by which a balance between neural induction and
maintenance of neural progenitors is achieved in the rhombic lip throughout embryonic
development.
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the mid-hindbrain boundary and above the opening of
the fourth ventricle. In the mouse embryonic brain, clo-
sure of the neural tube at around embryonic day 9.5
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(E9.5) generally creates a ventricular zone of neural pro-
genitors that give rise to successive waves of differentiating
neurons; however, at the opening of the fourth ventricle
the neuroepithelium extends directly to the roof plate,
resulting in an edge along the cerebellar and hindbrain
neural plate (r1-r8) termed the rhombic lip. Located at
the caudal boundary of the cerebellar anlage in dorsal r1,
the cerebellar rhombic lip is a unique germinal territory
that gives rise to granule cells and other neurons of the cer-
ebellum and hindbrain [1-4].

Immediately following neural tube closure, the expres-
sion of the mouse Atonal homolog Math1 [5], a basic
helix-loop-helix (bHLH) transcription factor that is
required for the granule cell lineage and other rhombic lip
derived neuronal populations [6-8], begins to be induced
in thombic lip cells that subsequently migrate away from
the rhombic lip rostrally over the dorsal surface of the cer-
ebellar anlage [9-11]. The roof plate is required for these
events [12-14], and is a source of bone morphogenetic
protein (BMP) family members that have been shown to
be sufficient to induce cerebellar progenitors to express
Math1 in vitro [15]. Furthermore, mouse embryos lacking
BMP receptor expression in the neural tube lose Math1
expression in the rhombic lip [16], indicating a crucial
role for BMP signaling in the ongoing induction of Math1
during rhombic lip neurogenesis.

A variety of fate mapping approaches have led to the con-
clusion that the cerebellar rhombic lip produces tempo-
rally distinct neuronal populations during embryogenesis
[11,17,18]. Recently, we have generated a temporal fate
map of the Math1 cells of the cerebellar thombic lip, using
transgenesis in mice to label cohorts of Math1 cells by
expressing an inducible Cre recombinase (CreER™?) under
the control of the Math1 enhancer. We and others have
reported that, prior to emergence of granule cell precur-
sors, the cerebellar rhombic lip is the germinal origin of
specific hindbrain and deep cerebellar neurons [7,8].
Here, we propose that, throughout the peak period of
neurogenesis in the rhombic lip (E9.5 to E16.5), there is
an ongoing BMP-mediated induction of Math1 in cerebel-
lar progenitors that produces waves of distinct neuronal
populations over time. Both the presence of Notch
responsive genes in this region [19] and the observation
that Notch can antagonize BMP signaling in other neuro-
nal cell types [20] suggest that the Notch pathway may
regulate this process. Utilizing both loss- and gain-of-
function approaches, we demonstrate that an antagonistic
interaction between Notch and BMP receptor signaling in
cerebellar progenitors regulates their maintenance and
differentiation within the rhombic lip throughout embry-
onic development.

http://www.neuraldevelopment.com/content/2/1/5

Results

Loss of Notch| in the cerebellar primordium increases
rhombic lip neurogenesis

Notchl mRNA is expressed in the cerebellar primordium
as early as E9 (data not shown), and by E12.5 is restricted
to neural progenitors in the ventricular zone (VZ) (Figure
1). BMP activity in the rhombic lip and caudal VZ is evi-
dent from the expression of Msx2, a homeodomain tran-
scription factor that has been shown to be a target of BMP
signaling [21]. Note that the expression pattern of Msx2
overlaps with the expression of Math1 at this embryonic
stage (Figure 1). Expression of the bHLH transcription fac-
tor Mash1 [22] likely delineates the precursors of Purkinje
cells and other GABAergic cerebellar neurons that arise
from the ventricular zone [19,23]. Within the VZ, Hes5
expression reflects Notch signaling activity in the cerebel-
lar progenitor pool, while the punctate expression of
Deltal likely indicates a subpopulation of neural precur-
sors that are undergoing differentiation.

As a first test for the requirement of Notch signaling in the
regulation of rhombic lip neural induction, we examined
whether loss of Notch activity in cerebellar progenitors
would lead to an increase in thombic lip neurogenesis as
measured by Math1 expression. To circumvent the early
(E10) lethality of Notchl null embryos [24], we crossed
mice carrying a conditionally null allele of Notch1 [25] in
which the first exon of the Notch1 gene has been flanked
by loxP sites (‘floxNotch1') with mice expressing cre
recombinase under control of the Engrailed-1 gene
(Enlcre) [26]. As shown by B-galactosidase staining in a
Rosa26 stop-lacZ background [27], Engrailed-1 directs the
expression of cre recombinase widely across the mid-
hindbrain region by E9.5 (Figure 2a). By E10.5, there is no
detectable Notchl mRNA remaining in the cerebellar pri-
mordium of the conditional mutant, in contrast to wild-
type littermates (Figure 2b, c), with the exception of the
most lateral territory, where recombination is incomplete
(data not shown). Loss of Notch1 did not have an overt
effect on isthmic or roof plate markers at this stage (Addi-
tional File 1). Both of the mRNAs for the bHLH transcrip-
tion factors Mashl and Math1 are expressed at higher
levels in the mutant embryos, but in a complementary
pattern: Mash1 expression is increased in the rostral cere-
bellar primordium (Figure 2d, e) whereas there is a robust
increase in Math1 expression proximal to the thombic lip
in comparison to wild-type littermates (Figure 2f, g). This
increase in Mathl expression is apparent at the protein
level as well (Figure 2h, i), and appears to reflect an
increase in both cell numbers as well as the levels of
Math1 expression induced within differentiating cells.

By E12.5, mutant embryos exhibit a marked decrease in
the size of the cerebellar primordium in comparison to
wild-type littermates. Nevertheless, no obvious increase in
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Figure |

Notch and BMP signaling components in the embryonic cerebellar primordium. Sagittal cryosections of E12.5 wild-type brains
were stained by in situ hybridization with antisense probes for Notchl, Mashl, Hes5, Msx2, Math| and Deltal. Differentiating
neural precursors in the ventricular zone (VZ) and rhombic lip (RL) are delineated by Mash! and Math |, respectively. Msx2
expression is indicative of BMP receptor signaling, and overlaps with the Math|* territory at this stage. Hes5 and Deltal are
expressed throughout the cerebellar progenitor population, and are generally indicative of high and low Notch| activity,
respectively. The field shown in these panels corresponds to the box in the schematic (inset). Scale bar represents 300 um.

cell death (terminal deoxynucleotidyl transferase-medi-
ated dUTP nick-end labeling, Additional File 2, or cas-
pase-3 immunohistochemistry), or decrease in
proliferation (short term bromodeoxyuridine incorpora-

tion) in the residual cerebellar ventricular zone was
observed at this stage (data not shown). Following the
upregulation of Mash1 in the mutants at E10.5 (Figure 2d,
e), Mash1 expression is decreased in all but the most ros-
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Conditional loss of Notch| in the early embryonic cerebellum results in precocious differentiation at the expense of the pro-
genitor pool. (a) Whole mount [3-galactosidase staining of an E9.5 Enlcre; Rosa-stoplLacZ reveals the extent of recombination
across the mid-hindbrain region. (b-g) In situ hybridization with antisense probes for (b, c)Notch!/, (d, e)Mash |, and (f, g)
Math| on sagittal cryosections of the cerebellar primordia from E10.5 floxNotch| (b, d, f) and Enlcre; floxNotchl (c, €, g)
embryos. (h, i) Immunohistochemistry for Math| on E10.5 floxNotchl (h) and Enlcre; floxNotch| (i) tissue cryosections. (j-
o) In situ hybridization with antisense probes for (j, k)Notch!, (I, m) Mash|, and (n, o) Math| on sagittal cryosections of the
embryonic cerebella from E12.5 floxNotch| (j, I, n) and Engrailed|-cre; floxNotch| (k, m, 0) embryos. The rl/r2 boundary is
indicated by the arrow in (k). Brackets in (m, n) indicate the extent of Math | induction in the VZ. (p, q) Immunohistochemistry
for Math| (white arrows) on EI2.5 floxNotch| (p) and Enlcre; floxNotch| (q) tissue cryosections. Scale bars in (g, o) repre-

sent 300 um.

tral territory of the ventricular zone in comparison to wild
type at E12.5 (Figure 21, m). In contrast, an increase in
Math1 expression is still evident in the E12.5 mutants, and
scattered Math1+ cells are observed in a broader area of the
ventricular zone in comparison with sections from wild
type littermates at the same medial-lateral position
(brackets in Figure 2n, o). This Math1 expression pattern
in the mutant resembles that observed in the most medial
sections from wild-type animals, where the cerebellar pri-
mordium is thinner and in closer proximity to the midline
and roof plate. The increase in subpial distribution of

Math1+ cells in the mutant could be accounted for by an
increase in migration rate away from the rhombic lip,
which is consistent with the observation that Math1 activ-
ity is required for subpial migration of rhombic lip neu-
rons [6,28].

The increase in Mathl expression and concomitant
decrease in Mashl from E10.5 to E12.5 in the mutants
suggests that early loss of Notch1 results in an increase in
rhombic lip neurogenesis at the expense of maintaining
the ventricular zone progenitor pool. Consistent with this,
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by E16.5, the mutant cerebellum is greatly reduced in size
in comparison to wild type (Figure 3a-d), and there is a
severe decrease in the Purkinje cell precursors (calbindin
immunostaining) that are normally generated from the
ventricular zone beginning around E12 (Figure 3e, f). In
contrast to the results presented in a previous study on the
En2-Cre; floxNotchl mutant mouse [19], we did not
observe any postnatal survival of mutant embryos, and
even by E18.5 there was no apparent recovery of the
mutant cerebellum in terms of size or morphology (data
not shown). The greater severity of phenotype in our
study most likely results from a more complete loss of
Notch1 in the cerebellar primordium using the Enl-cre
knock-in mouse than was obtained in the En2-cre;
floxNotch1 mutant.

Previously, we and others have found that early Math1
rhombic lip neural precursors give rise to specific hind-
brain nuclei and the deep cerebellar nuclei (DCN) [7,8],
with the peak production of the latter occurring around
E11.5, suggesting that these neurons are generated after
the majority of hindbrain neurons have been produced
(E9.5 to E11.5). To obtain a short term fate map of the
Math1+ cells that arise in the Enlcre; floxNotch mutant
cerebellum, we generated this conditional mutant on a
Math1-LacZ knock-in (+/-) background [29] and analyzed
the residual p-galactosidase staining present in rhombic
lip lineages in coronal sections at E14.5. Strikingly, while
we observed overall comparable numbers of rhombic lip-
derived B-gal* hindbrain neurons that collectively include
the mesopontine tegmental (MPT), parabigeminal (PBG),
lateral lemniscus (LL), and lateral parabrachial (LPB) neu-
rons from rostral to caudal positions (Figure 4a-d, long
arrows), we observed a dramatic decrease in DCN (short
arrows). Neurons of the LPB that arise from a Math1+ pre-
cursor have been shown to express calbindin embryoni-
cally [8] and, interestingly, we observed an increase in
calbindin staining in the mutant (Figure 4e, f, white
arrows). This result suggests that, in the absence of Notch1
activity, specific early thombic lip derived lineages are
generated in excess at the expense of the hindbrain nuclei
and DCN that are specified slightly later.

Surprisingly, we also observed that granule cell precursors
(GCPs), a thombic lip derived population specified after
the DCN, appear to be generated to some extent in the
mutant, although there is a pronounced decrease in cau-
dal regions (Figure 4c, d). The persistence of granule cells
in the mutant may reflect the fact that, while the Enlcre
driver used in these experiments recombines the vast
majority of the mes/r1 primordium, the most lateral
regions of the cerebellar primordium escape recombina-
tion (data not shown). Thus, it is possible that some gran-
ule cells are generated laterally and migrate medially to
populate the rostral external granule layer (EGL). Alterna-

http://www.neuraldevelopment.com/content/2/1/5

tively, as discussed in more depth below, there may be dis-
tinct lineage-restricted pools of thombic lip progenitors
that are maintained independently of Notch activity until
they begin to divide asymmetrically to produce neurons.

The level of Notch activity in cerebellar progenitors
regulates their cell fate

If the loss of Notch1 enhances the responsiveness of cere-
bellar progenitors to inductive signals that direct rhombic
lip neurogenesis, then expression of Notch ligands (for
example, Delta) should also render cells more receptive to
these developmental cues by virtue of lateral inhibition
[30]. To test this hypothesis directly, we generated a pseu-
dotyped bicistronic retrovirus that expresses full length
Deltal, along with human placental alkaline phosphatase
(PLAP), to allow histochemical detection of transfected
cells. Approximately 10° virions were injected into the
ventricle of E9.5 to E10 embryos in utero using ultrasound
backscatter microscopy [31], and the infected animals
analyzed three weeks after birth. Figure 5a shows the
results of injections of a control retrovirus expressing only
PLAP analyzed at P21 by alkaline phosphatase histochem-
istry. Infected cells were present in all compartments of
the mature cerebellum and did not show an obvious bias
towards any particular cell type. Strikingly, similar injec-
tions with retroviruses expressing full length Deltal (Fig-
ure 5b) resulted in the labeling of granule -cells
predominantly, as observed by position, morphology
(note the PLAP staining of parallel fibers in the molecular
layer), and immunohistochemical co-labeling with anti-
bodies against Zic2 (green) [32] and PLAP (red; Figure 5e
inset). Furthermore, Deltal infections at this stage also
appeared to contribute to the DCN (white arrow). Given
that these retroviruses require approximately 24 hours to
integrate and express the Deltal protein, we suggest that
these Delta infected cells were differentiating and express-
ing Math1 at around E11.5 to E12 and thus contributed to
the DCN and early specified (anterior) GCP that are nor-
mally produced at that time.

To examine the effect of constitutive Notch activation in
cerebellar progenitors, we performed injections with a ret-
rovirus expressing the intracellular domain of the Notch
receptor (Notch ICD), which is known to result in ligand
independent activation of the Notch signaling pathway
[33]. Injections of Notch1 ICD expressing retroviruses at
E9.5 resulted in infected cells developing primarily into
Bergmann radial glia (Figure 5c) as shown by their radial
morphology and immunohistochemical co-labeling with
brain lipid-binding protein (BLBP; red) [34] and PLAP
(green; Figure 5f inset). These gain-of-function experi-
ments demonstrate that constitutive Notch activity in cer-
ebellar progenitors prevents these cells from developing
as rhombic lip derivatives. While several recent reports
have described a role for Notch signaling in Math1+ line-

Page 5 of 13

(page number not for citation purposes)



Neural Development 2007, 2:5 http://www.neuraldevelopment.com/content/2/1/5

floxNotch1

calbindin

Figure 3

Conditional loss of Notch| in the cerebellar primordium results in severe hypoplasia and loss of Purkinje cell precursors. (a,
b) Sagittal whole mount view of E16.5 floxNotch| (a) and Enl-cre; floxNotch| (b) brains. The arrows in (a, b) indicate the
position of the cerebellum. (c-f) Sagittal cryosections of floxNotch| (c, €) and Enl-cre; floxNotch| (d, f) cerebella stained by
hematoxylin and eosin histochemistry (c, d) or by immunohistochemistry for calbindin (e, f). Boxes in (c, d) indicate the
approximate photographic fields in (e, f). Dashed box in (f) delineates the residual cerebellum in the mutant embryo. Scale bars
in (e, f) represent 300 um.
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Short term fate map of Math|-lacZ cells generated after conditional ablation of Notch! in the cerebellar primordium. (a-d)
Coronal sections from E[4.5 floxNotch| (a, c) and Enl-cre; floxNotch| (b, d) embryos stained for (-galactosidase activity.

Long arrows indicate the approximate position of the MPT and LPB neurons, and short arrows indicate the position of the

DCN. (e, f) Inmunohistochemical staining for calbindin on adjacent sections to (a, b) shows an increase in the LPB neuron
hindbrain population (white arrows). The asterisk in (€) indicates calbindin positive afferents that are absent in the mutants.
Quantification of 3-gal* cells in the control and mutant brains across rostral to caudal tissue sections shows the decrease in
DCN in the mutant. Scale bar in (f) represents 300 pm. CB, cerebellum; MB, midbrain; RL, rhombic lip.

ages following their specification [35,36], our results
argue that, in those contexts, Notch signaling must be reg-
ulated in a dynamic manner such that subsequent phases
of differentiation can occur.

Notch| activity inhibits BMP signaling at the level of MsxI/
2 expression

While both Notch and BMP activities have been shown to
be crucial during embryonic cerebellar development, how
these signaling pathways interact in this context is
unknown. To explore the mechanism by which Notchl
signaling in the cerebellar primordium antagonizes the
induction of rhombic lip neurogenesis in progenitor cells
by BMP signaling, we chose to use the chick in ovo electro-
poration system, which is well suited for short term gain-
of-function with multiple expression plasmids [37]. Stage

HH 10-12 chick embryos [38] were electroporated at the
mid-hindbrain boundary with various expression con-
structs along with a green fluorescent protein (GFP)
reporter plasmid, and analyzed two days later by in situ
hybridization on cryosections of the cerebellar primor-
dium for changes in the expression of the chick Mathl
homolog Cathl (Figure 6). To test whether ectopic BMP
activity could induce Cathl expression, we electroporated
a constitutively active form of the BMP receptor 1b
(caBMPR) at a level sufficient to induce patterning
changes but not cell death [39,40]. While a control elec-
troporation of a GFP reporter plasmid alone did not
induce Cath1 expression (Figure 6a, b), ectopic activation
of the BMP signaling pathway in the cerebellar primor-
dium (dashed circle) resulted in a robust induction of
Cath1 expression along the dorsal surface of the cerebellar
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Figure 5
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Notch1 ICD

Notch| activity regulates cell fate decisions in the embryonic cerebellum. Pseudotyped bicistronic retroviruses expressing
PLAP and full length Deltal or the Notch| ICD were injected into the ventricle of E9.5 embryos in utero using ultrasound back-
scatter microscopy, and the pups sacrificed at P21. Brains of infected animals were cryosectioned sagittally and stained for alka-
line phosphatase using NBT/BCIP histochemistry. (a, d) Control experiment with retrovirus expressing alkaline phosphatase
alone. (b, e) Retroviral expression of Deltal in E9.5 cerebellar progenitors yields granule cells at P21; the inset in (e) shows
sections stained by immunohistochemistry for PLAP (red) and Zic2 (green). (c, f) Retroviral expression of the Notchl ICD in
E9.5 cerebellar progenitors results in Bergmann glia at P21; inset in (f) shows sections stained for PLAP (green) and BLBP (red).
Scale bars in (c, f) represent 300 um. ICD, intracellular domain; IGL, internal granule layer; ML, molecular layer.

anlage (Figure 6¢, d). Interestingly, when the Notch1 ICD
was co-electroporated along with the caBMPR expression
plasmid into the cerebellar ventricular zone, the ectopic
induction of Cathl was suppressed (Figure Ge, f; Addi-
tional File 3). Thus, although ventricular zone progenitors
are competent to respond to BMP signaling and express
Cathl, they are prevented from doing so by high levels of
Notch activity.

The observation that Notch activity can block the induc-
tion of Cathl by BMP signaling in cerebellar progenitors
prompted us to try to determine at what level these path-

ways intersect within the cell. Electroporations in chick
cerebellar primordia of caBMPR alone or caBMPR and
Notch1 ICD were stained by immunohistochemistry for
phosphorylated Smad1, a direct readout of BMP receptor
signaling activity [41]. Smadl is a transcription factor
that, upon phosphorylation by the BMP receptor serine/
threonine kinase activity, forms a heterodimer with
Smad4 and translocates to the nucleus to activate tran-
scription of target genes (for example, Msx1/2; Figure 6h)
[42]. As shown in Figure 6, the levels of phosphorylated
Smadl were elevated in both caBMPR (Figure 6i) and
caBMPR/Notch1 ICD (Figure 6Kk) electroporated tissue,
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cerebellar primordium. (a-f) Stage 10 to |12 chick embryos were
pression plasmids described below. After two days of incubation,

embryos were processed for cryosectioning, and the sections processed by in situ hybridization for Cathl. Adjacent sections
were photographed for GFP and Cathl in each experiment. (a, b) GFP alone. (c, d) GFP and caBMPR1b. (e, f) GFP, Notch|
ICD, and caBMPRIb. In the case of caBMPRIb and Notch| ICD/caBMPRIb electroporations, additional sections were stained
by immunohistochemistry for GFP (green) and phosphorylated (g, i, j) Smadl and (h, k, I) Msx1/2 expression (red; green and
red channels are shown separately to the left of each overlay). The rostral cerebellar primordium is outlined with a dashed
oval. In the caBMPR and Notch| ICD/caBMPR Msx1/2 stainings shown in (k, ), GFP/Msx1/2+ and GFP/Msx|/2- cells were

counted across sections from three electroporated cerebella
pm.

each and represented as columns. Scale bar in (f) represents 100

demonstrating that expression of the Notch ICD does not
interfere at this stage of the BMP signaling pathway. How-
ever, while electroporation of caBMPR into the cerebellar
primordium (dashed oval) resulted in ectopic expression

of Msx1/2 in the ventricular zone (Figure 6j), this induc-
tion was suppressed when Notch1 ICD was co-electropo-
rated (Figure 61). Counts of GFP+/Msx1/2+ cells in the
ventricular zone of caBMPR and caBMPR/Notch1 ICD

Page 9 of 13

(page number not for citation purposes)



Neural Development 2007, 2:5

electroporated cerebella from three embryos each are
shown in the graph and indicate that, while approxi-
mately 80% of ventricular zone cells transduced with
caBMPR express Msx1/2, this percentage drops to around
10% when Notch1 ICD is co-transduced. Thus, expression
of the Notch1 ICD antagonizes the BMP signaling path-
way at the level of Msx1/2 expression.

Discussion

We have examined the early stages of cerebellar develop-
ment to gain an understanding of how neurogenesis in
the rhombic lip is regulated throughout embryogenesis.
We find that Notch signaling is critical for controlling the
timing of induction of rhombic lip neurons from the cer-
ebellar progenitor pool as well as for maintaining a pro-
genitor population for subsequent waves of neurogenesis.
Using in vivo gain-of-function methods, we show that the
neural differentiation of cerebellar progenitors can be
inhibited by constitutive activation of the Notch1 signal-
ing pathway during early embryogenesis, and that cell
autonomous downregulation of Notch activity via expres-
sion of Deltal at early embryonic stages (E11.5) increases
the responsiveness of cells to differentiate as rhombic lip
neurons. Furthermore, we find that activation of the BMP
signaling pathway can induce the thombic lip proneural
gene Mathl ectopically in the ventricular zone, and that
simultaneous activation of the Notch pathway blocks this
inductive effect at the level of Msx expression. Thus, we
propose that antagonism between the Notch and BMP sig-
naling pathways regulates the differentiation of cerebellar
progenitors throughout the period of neurogenesis in the
rhombic lip.

We and others have recently shown that there is an ongo-
ing induction of Math1 in the cerebellar rhombic lip that
produces distinct populations of neurons over time; here,
we find that this inductive process is regulated by interac-
tions between the Notch and BMP signaling pathways.
However, at present little is known about the cerebellar
progenitors that give rise to rhombic lip Math1+ lineages,
and whether they are composed of a number of lineage-
restricted progenitor populations or a single pool of pro-
genitors. Previous work from our lab and others suggests
that the neural progenitor cells within the ventricular
zone are heterogeneous [43-45], and that while at early
embryonic stages some progenitor lineages are being
maintained by symmetric non-neurogenic divisions, oth-
ers are becoming neurogenic and divide asymmetrically to
produce differentiating neurons. It appears likely that
Notch signaling is particularly critical in maintaining a
progenitor lineage during asymmetric cell divisions. In
this context, our fate mapping results shown in Figure 4
may indicate that there are multiple Math1-negative pro-
genitor lineages within the cerebellar progenitor popula-
tion that give rise to rhombic lip neurons. While the total
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number of hindbrain neurons (PBG, MPT, LPB) specified
appears to be relatively unaffected by loss of Notch1, the
LPB neurons appear to be increased in number at the
expense of the MPT neurons and DCN, suggesting that
these rhombic lip derived neurons may arise from a com-
mon progenitor lineage. The persistence of GCPs in this
experiment may reflect that there is a distinct progenitor
population for GCPs that is maintained independently of
Notch activity during the production of hindbrain and
DCN until specification of GCPs begins. This possibility
could account for the observation that only the early born
(rostral) GCPs appear to be specified in the conditional
Notchl mutant, in that Notch signaling would be
required to maintain the GCP progenitor pool during the
period of GCP induction, and thus these progenitors
would be rapidly depleted in the absence of Notch activ-
ity. Alternatively, the GCPs that are observed may have
arisen from the most lateral regions of the cerebellar pri-
mordium that are not recombined by the En1-Cre driver
since these cells (but not DCN) are known to migrate
from lateral to medial positions [46].

The role of BMP signaling in neural induction has been
studied in many contexts, as has the anti-neurogenic role
of Notch signaling. However, little is known at present
about how these two pathways interact in vivo to regulate
neurogenesis. A recent study on cell fate determination in
neural crest derivatives demonstrated a dominant effect of
Notch activation in preventing neuronal differentiation in
response to BMP signaling in vitro [20]. In this study, it
was found that transient Notch activation in neural crest
progenitors resulted in a permanent gliogenic fate switch.
In the context of the cerebellum, both Notch and BMP sig-
naling have been shown to regulate neurogenesis, but it is
not clear that these signaling pathways interact in the
same manner as observed in the neural crest. We find it
unlikely that cerebellar progenitors that are maintained in
the ventricular zone via Notch signaling are committed
exclusively to a glial fate. Rather, at this stage of progenitor
maturation, Notch signaling acts to inhibit responsive-
ness to BMP signaling but is not itself instructive until
later developmental stages.

Our data demonstrating that the Notch and BMP receptor
signaling pathways interact competitively within cerebel-
lar progenitors suggest that the Notch1 ICD and activated
Smad1/Smad4 moieties converge on a common target. It
has been reported that the Notch1 ICD binds to the core
transcriptional activator p300 [47], and forms a complex
with p300/CBP-associated protein (P/CAF), Rbp-J and
Mastermind like-1 (MAML1) to activate transcription
[48]. Recently, it has been shown that phosphorylated
Smad1 can be co-immunoprecipitated with the Notch-1
ICD in the presence of p300 and P/CAF [49], suggesting
that these core transcription co-activators may mediate
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the interactions between Notch and BMP signaling. An
intriguing complement to the above is suggested by a
recent report that Smad1 contains inhibitory phosphor-
ylation sites that are targeted by the mitogen-activated
protein kinase (MAPK) signaling cascade [50,51]. Fibrob-
last growth factor (FGF) signaling from the isthmus could,
therefore, potentiate Notch signaling in the cerebellar pri-
mordium by decreasing the responsiveness of rostral cere-
bellar progenitors to BMPs secreted from the roof plate.

The cerebellar rhombic lip is a unique germinal zone that
produces specific hindbrain nuclei, DCN, and granule cell
precursors in a temporally regulated manner. Our results
provide a mechanistic explanation for how the ongoing
induction of Math1 in cerebellar progenitors is regulated
in the rthombic lip throughout embryogenesis. Because
the initiation of neurogenesis in the rhombic lip begins
immediately following neural tube closure, and continues
late into embryonic development, we find a critical role
for Notch1 signaling in the cerebellar primordium during
this period to inhibit cerebellar progenitors from respond-
ing prematurely to thombic lip inductive signals. We sug-
gest this represents the first of a set of distinct roles that
Notch1 performs in the embryonic cerebellum. We pro-
pose Notchl signaling acts iteratively in the cerebellar
progenitor population, first by inhibiting the overproduc-
tion of early rhombic lip derived neurons, then by regulat-
ing neurogenesis in the ventricular zone [19], and finally
by stimulating gliogenesis [20,33]. Furthermore, in addi-
tion to Notch1, other Notch family members have been
shown to regulate granule cell precursor development
during embryogenesis through possible reciprocal inter-
actions with Math1 [36]. Postnatally, Notch2 signaling
has been shown to regulate the maturation of granule cell
precursors in the EGL by maintaining them in a prolifera-
tive state [35]. Thus, it appears that the Notch signaling
pathway acts to arrest the differentiation state of cerebellar
precursors at multiple developmental stages. Deciphering
how the Notch signaling pathway modulates the respon-
siveness of neural progenitors to developmental cues will
be crucial for understanding the regulation of growth and
differentiation of the central nervous system throughout
embryogenesis.

Methods

Mouse genotyping and tissue preparation

Engrailed1-cre, floxed Notch1, Math1-LacZ, and Rosa26
stopLacZ mice were genotyped as previously described
[25-27,29]. To generate Enlcre; floxNotch1 embryos, the
Enl-cre line was crossed with homozygous floxNotch1
animals, and the resultant Enl-cre; floxNotch1/+ males
crossed with homozygous floxNotch1 females. Enlcre;
floxNotch1; Math1-LacZ animals were generated by cross-
ing Enlcre; floxNotchl (c¢/+) with Mathl-LacZ;
floxNotch1 (¢/+). The morning of the observed plug was
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considered day 0.5. Embryos collected at E10.5 to E14.5
were fixed in ice cold 4% paraformaldehyde/phosphate-
buffered saline (PBS) for 1 to 2 hours, washed in PBS, and
equilibrated in 30% sucrose/PBS overnight. Older
embryos and adults were perfused transcardially and the
brains dissected prior to sucrose equilibration. For cryo-
sectioning, embryos were mounted in Tissue-Tek OCT
(VWR, West Chester, PA) and sectioned at 14 to 20 uM.

In situ hybridization and immunohistochemistry

Section antisense RNA in situ hybridization was per-
formed as previously described [52], with the following
probes: Notchl, Mathl, Mash1, Msx2, and Cathl. Immu-
nohistochemistry with antibodies against Math1 (rabbit-
antiserum; kind gift of ] Johnson (UT Southwestern Med-
ical Center), calbindin (rabbit antiserum; Swant, Bellin-
zona, Switzerland), human placental alkaline
phosphatase (sheep «-PLAP antiserum; American
Research Products, Belmont, MA, USA), Zic2 (rabbit
antiserum; kind gift of ] Aruga (RIKEN Brain Science Insti-
tute), BLBP (rabbit antiserum, kind gift of T Anthony and
N Heintz (Rockefeller University), phosphorylated
Smad]1 (purified rabbit IgG; Cell Signaling Technologies,
Danvers, MA, USA), and Msx1/2 (mouse monoclonal
antibody 4G1, ascites, Developmental Studies Hybrid-
oma Bank, Iowa City, IA, USA) was performed as previ-
ously described [33].

Retroviral injections

Preparation, injection, and histochemical analysis of con-
trol (CLE) and Notchl ICD (CLEN) retroviruses have
been described previously [33]. Full-length ¢cDNA for
human Deltal was subcloned into pCLE downstream of
the EF1a promoter (CLED) and virus prepared as above.
We analyzed six to eight P21 brains each for the CLED and
CLEN experiments and found three to four for each that
had substantial infections in the cerebellum.

Chick electroporation

In ovo electroporation was performed as described previ-
ously [40], with the following modifications. Specifically,
cDNA for the Notch1 ICD was subcloned into the chick
expression vector pMiwlll, such that its expression was
directed by the chicken B-actin promoter. The constitu-
tively active BMP receptor 1b and GFP constructs have
been described previously [40]. Plasmids were injected
into the ventricle at the mid-hindbrain boundary (GFP,
0.2 pg/pl; Notch1 ICD, 1 pg/ul; and caBMPR, 0.33 pg/ul)
and two electrodes placed on either side of the neural
tube. Five rectangular electric pulses of 15 volts (50 ms
each) were then delivered. Embryos were recovered after
approximately two days further incubation, fixed for 1
hour in ice cold 4% paraformaldehyde/PBS, washed in
PBS, and allowed to equilibrate overnight in 30% sucrose/
PBS prior to mounting and cryosectioning. At least three
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electroporated embryos were analyzed for each experi-
ment.
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