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Abstract

The embryonic vertebrate neural tube is divided along its dorsoventral (DV) axis into eleven molecularly discrete
progenitor domains. Each of these domains gives rise to distinct neuronal cell types; the ventral-most six domains
contribute to motor circuits, while the five dorsal domains contribute to sensory circuits. Following the initial
neurogenesis step, these domains also generate glial cell types—either astrocytes or oligodendrocytes. This DV
pattern is initiated by two morphogens—Sonic Hedgehog released from notochord and floor plate and Bone
Morphogenetic Protein produced in the roof plate—that act in concentration gradients to induce expression of
genes along the DV axis. Subsequently, these DV-restricted genes cooperate to define progenitor domains and to
control neuronal cell fate specification and differentiation in each domain. Many genes involved in this process
have been identified, but significant gaps remain in our understanding of the underlying genetic program. Here we
review recent work identifying members of the Prdm gene family as novel regulators of DV patterning in the neural
tube. Many Prdm proteins regulate transcription by controlling histone modifications (either via intrinsic histone
methyltransferase activity, or by recruiting histone modifying enzymes). Prdm genes are expressed in spatially
restricted domains along the DV axis of the neural tube and play important roles in the specification of progenitor
domains, as well as in the subsequent differentiation of motor neurons and various types of interneurons. Strikingly,
Prdm proteins appear to function by binding to, and modulating the activity of, other transcription factors
(particularly bHLH proteins). The identity of key transcription factors in DV patterning of the neural tube has been
elucidated previously (e.g. the nkx, bHLH and pax families), but it now appears that an additional family is also
required and that it acts in a potentially novel manner.
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Introduction
Function of the adult central nervous system (CNS) re-
lies on neural circuits to control activity. In order for
such circuits to form, neurons must develop at the right
time and place of the CNS during embryogenesis. A very
elaborate genetic program is responsible for this process
along both the head-to-tail (anteroposterior; AP) and
back-to-front (dorsoventral; DV) axes of the CNS. In
terms of the DV axis, secreted factors (Sonic hedgehog
and Bone morphogenetic protein) initially establish gra-
dients that are sensed by progenitor cells in the

developing neural tube. Depending on their location in
the gradient, different progenitor cells initiate the ex-
pression of different genes, leading to a pattern of gene
expression along the DV axis. These genes subsequently
refine the pattern by repressing each other’s expression,
as well as by activating the expression of additional genes
(e.g. neurotransmitters and their receptors) that define dif-
ferent types of neurons (e.g. GABAergic versus glutami-
nergic). Some genes involved in this process are known,
but this review focuses on a new class of genes—the Prdm
family—that appears to control gene expression during
the formation of neurons along the embryonic DV axis.
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Review
Prdm family proteins as regulators of gene expression
The Prdm family of proteins has only been recognized
relatively recently (reviewed in [1, 2]). Proteins in this
family are defined by an N-terminal PR domain, as well
as by a varying number of zinc fingers (or, potentially,
zinc knuckles). The PR domain was named after its initial
identification in the Positive regulatory domain I-binding
factor 1 (formerly PRDI-BF1/Blimp-1, now Prdm1) and
the Retinoblastoma protein-interacting zinc finger protein
1 (formerly Riz1, now Prdm2) factors [3–6]. While Prdm
proteins may function differently in different contexts,
emerging evidence suggest that these factors act to regu-
late gene expression.
The PR domain is related to the SET domain—a cata-

lytic domain with histone lysine methyltransferase (HMT)
activity named after the Su(var)3–9, Enhancer of zeste and
Trithorax proteins—but the PR domain has diverged sig-
nificantly from SET domains. In particular, most PR
domains lack the H/RxxNHxC motif required for meth-
yltransferase activity ([7]; reviewed by [1]). Accordingly,
many Prdm proteins appear to lack intrinsic HMTase
activity ([8–11] reviewed by [2]). Nevertheless, Prdm2,
Prdm8, and Prdm9 have been reported to possess in-
trinsic HMT activity [2, 12–15], although the details of
the catalytic mechanism are unclear. Strikingly, Prdm2
and Prdm8 methylate histone H3 on lysine 9 (H3K9), a
modification associated with heterochromatin formation
and transcriptional repression, whereas Prdm9 directs for-
mation of H3K4me3—a modification associated with tran-
scriptional activity [13–15]. Hence, Prdm proteins may
mediate transcriptional activation or repression depending
on the nature of their intrinsic HMT activity. Of the Prdm
proteins that are enzymatically inactive, many are instead
able to recruit histone-modifying enzymes and transcrip-
tion regulatory factors via protein-protein interactions.
Enzymes recruited in this manner include HMTs, the Pol-
cycomb repressive complex 2 (PRC2), protein methyl-
transferase 5 (Prmt5), lysine specific demethylase 1 (Lsd1),
as well as histone deacetylases (HDACs) and histone ace-
tyltransferases (HATs) [10, 16–22] (reviewed in [1, 2]). For
example, Prdm1, Prdm5, Prdm6 and Prdm12 all function
with the G9a HMT [2, 8–10, 23] and Prdm3 with the
Suv39H1 HMT [24] to methylate H3K9 and promote re-
pression. Prdm1 can also function with Prmt5 to methy-
late H2AR3 and H4R3 [17]. Some Prdm family members
require their zinc fingers for recruitment of histone modi-
fying enzymes, while others (such as Prdm1 and Prdm3)
also make use of a proline-rich domain [1, 25, 26]. Add-
itionally, transcriptional regulators can be recruited by
Prdm proteins, such as the recruitment of Groucho by
Prdm1, and the recruitment of CtBP by Prdm2, Prdm3
and Prdm16 ([27–34], reviewed [1]). Hence, Prdm pro-
teins appear to function by modulating gene expression

states either directly (via intrinsic HMTase activity), or in-
directly (via recruitment of various cofactors).
In order to affect gene expression, Prdm proteins need

to access genomic sites in chromatin. Accordingly, Prdm1,
Prdm3, Prdm5, Prdm9, Prdm13, Prdm14, and Prdm16
bind DNA directly in a sequence dependent manner via
their zinc-finger domains ([9, 35–43] reviewed in [1, 2]).
While many Prdm proteins have only been tested for
DNA binding using in vitro systems, ChIP-seq experi-
ments (chromatin immunoprecipitation using Prdm-
specific antibodies followed by deep sequencing) have
also identified genomic binding sites for a subset of
Prdm factors (Prdm1, Prdm3, Prdm13, and Prdm14)
[35, 37, 41, 43–46]. Prdm members that do not bind
DNA directly instead appear to utilize binding partners
to indirectly associate with DNA, as in the case of
Prdm8 accessing DNA by binding together with Bhlhb5
in the developing nervous system [47] and Prdm16
binding with C/EBPβ to promote brown adipose tissue
[48]. Again, the zinc finger motifs, as well as proline-
rich domains and zinc knuckles, are likely to mediate
binding of Prdm proteins to partner proteins to facili-
tate access to genomic sites. Based on their association
with DNA (directly or indirectly), as well as their ability
to modify histones (directly or indirectly) and recruit
transcriptional regulators, it is likely that Prdm family
proteins function to regulate gene expression states. In-
deed, Prdm factors appear capable of activating or
repressing target genes depending on the specific con-
text—as reported for Prdm1 and Prdm2 [49, 50]. Prdm
proteins have been reported to function in numerous
settings, including hematopoiesis, adipogenesis and the
maintenance of stem cell identity (reviewed by [1, 2]).
More recently, several studies have indicated a central
role for Prdm factors in the establishment of neuronal
cell fates, particularly in the forming hindbrain and
spinal cord.

Multiple roles for Prdm proteins in dorsoventral
patterning of the neural tube
Shortly after neural tube closure, the neuroepithelium
undergoes extensive transformations, including cell pro-
liferation and specification, to give rise to various neur-
onal and glial cell types necessary for motor and sensory
circuits. This process requires several steps (Fig. 1): First,
gene expression is initiated along the dorsoventral (DV)
axis of the neural tube in response to morphogen gradi-
ents. Second, these domains are refined and discrete gene
expression boundaries established by complex regulatory
interactions among many genes. Third, distinct neuronal
and glial cell types are specified and differentiate from
each progenitor domain. Strikingly, emerging data suggest
that each of these steps may be under the control, at least
in part, of Prdm family genes (Table 1).
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Prdm genes are expressed in discrete domains along
the DV axis of the neural tube Studies in several verte-
brate species have demonstrated a critical role for Sonic
Hedgehog (Shh) in patterning of the ventral neural tube
and in specification of ventral neuronal cell types. Spe-
cifically, Shh is a morphogen secreted from the noto-
chord and floor plate that—along with factors such as
Chordin and Noggin that oppose the dorsally expressed
BMP morphogen (see below)—induces gene expression
in the ventral neural tube (reviewed by [51–53]). This
has been demonstrated experimentally by overexpression
of Shh in vivo and by application of exogenous Shh to
neural tube explants in culture, as well as by inhibiting
Shh signaling using neutralizing antibodies or germ line
knock outs [54–63]. The Shh gradient subdivides the
neural tube into distinct DV progenitor domains by
regulating the expression of different genes at different
thresholds of Shh signaling ([64–68]; Fig. 1). In particu-
lar, Shh activates genes such as Nkx6.1, Nkx6.2, Nkx2.2,
and Olig2, while it represses genes such as Pax3, Pax6,
Pax7, Dbx1, Dbx2 and Irx3 [63–71]. Notably, at least
three Prdm genes (Prdm8, Prdm12, and Prdm14; Fig. 2)
are expressed in the ventral neural tube. Expression of
Prdm8 is present in the p1, p2 and pMN domains [72],
while Prdm14 is expressed in the pMN domain, specific-
ally in a subset of motor neurons—the Caudal Primary

(CaP) motor neurons [46]—and Prdm12 is expressed in
the p1 domain [73, 74]. Based on their expression do-
mains, these three Prdm genes are likely to be regulated
by Shh signaling. Indeed, treatment with cyclopamine (a
Shh signaling inhibitor), causes a reduction of Prdm12b
expression in zebrafish [73]. This suggests that Prdm12b
is partially dependent on Shh signaling, as previously re-
ported for other genes expressed in the p1 domain [67],
but it remains to be determined if Prdm8 and Prdm14
expression is also regulated by Shh signaling.
Similar to Shh signaling in the ventral neural tube,

Bone Morphogenetic Proteins (BMPs) function in the
dorsal neural tube to pattern progenitor domains and
regulate cell specification (Fig. 1). In particular, BMP4,
BMP5 and BMP7, as well as the related Gdf7 protein,
are expressed in the ectoderm overlaying the neural tube
and function in concentration gradients to establish the
dP1-6 progenitor domains [75, 76]. As expected, increas-
ing or decreasing the BMP signal in the dorsal neural
tube expands or reduces the specification of dorsal cell
types, respectively [77–79]. In addition, loss of BMP re-
ceptors leads to loss of the dP1 and a dorsal shift in the
dP2 domain [79], while expression of a constitutively ac-
tive BMP receptor causes a ventral shift in Pax7 expres-
sion and an up-regulation of the dP1 expressed Atoh1
(previously Math1) [77]. Notably, Prdm13 is expressed in
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Fig. 1 Schematic diagram of a neural tube cross section. Dorsoventral domains are established by opposing concentration gradients of Shh and
BMP (center), which regulate progenitor gene expression (left). The progenitor genes cross-repress each other to establish domain boundaries.
Each domain will give rise to a specific cell type that expresses various post-mitotic differentiation genes (right)

Zannino and Sagerström Neural Development  (2015) 10:24 Page 3 of 12



the dorsal neural tube in the dP2-dP6 domains ([43, 80];
Fig. 2), suggesting that it may be regulated by BMP.
However, Prdm13 has been shown to act downstream
of Ptf1a, so BMP may function indirectly to control
Prdm13 expression [43, 80]. Notably, the expression of
Prdm12b in the p1 domain may also be sensitive to
BMP signaling since the p0 and p1 domains are
dependent on both Shh and BMP signaling (e.g. Evx1
and En1 expression in p0/p1 is reduced upon introduc-
tion of a constitutively active BMP receptor; [77];
reviewed by [52]). Accordingly, Prdm12 is regulated by
BMP signaling outside the neural tube, such as in pre-
placodal ectoderm [81].
Factors in addition to Shh and BMP are also involved

in establishing progenitor domains in the neural tube.
For instance, ventrally expressed BMP inhibitors (Chor-
din, Noggin and Follistatin) are required to suppress
BMP signaling, thereby promoting the formation of ven-
tral progenitor domains [82–87]. FGF signaling also pro-
motes ventral fates by repressing Pax6, Irx3, Dbx1 and
Dbx2 [88–90]. In contrast, Wnt1 and Wnt3a expressed
in the roof plate are required for formation of dorsal

progenitor domains (reviewed in [52, 53]), as loss of
Wnt signaling leads to reduction in dP1 and dP2 neu-
rons, with excess formation of dP3 neurons [91]. Retin-
oic acid (RA) is also released from the roof plate [92]
to promote formation of dorsal progenitor domains.
Accordingly, reduced RA signaling leads to dorsal ex-
pansion of ventral genes such as Nkx6.1 and Nkx2.2
[90, 93, 94]—although this may be a partially indirect
effect mediated by loss of Pax6 [52]—and reduced ex-
pression of dorsal genes such as Bmp4/7, Msx2, Pax3/
7, Wnt1/3a, Pax6 and Irx3 [90, 94–97]. Several Prdm
genes are regulated by these pathways outside of the
neural tube. For instance, expression of Prdm12 in
Xenopus lateral pre-placodal ectoderm is reduced when
Wnt3a is over-expressed [81] and Prdm14 expression
in primordial germ cell specification may be activated
when T-Brachyury—a downstream target of Wnt3a—
binds to an enhancer at the Prdm14 gene [98]. Further-
more, RA treatment induces expression of Prdm12 in
cell lines [23]. Hence, it is plausible that Prdm gene ex-
pression is induced by Fgf, Wnt and/or RA signaling
also in dorsoventral patterning of the neural tube.

Table 1 Summary of Prdm gene expression and function in the nervous system

Prdm
gene

Nervous system expression Nervous system function Intrinsic HMT
activity

Direct DNA
binding

References

Prdm1 CNS: photoreceptors CNS: photoreceptor identity No Yes [8, 108, 109, 120,
144–147]

PNS: prechordal plate, branchial
arches, Rohon-Beard neurons

PNS: branchial arch formation,
Rohon-Beard specification

Prdm3 CNS: telencephalon, tegmentum,
diencephalon, hindbrain

CNS: olfactory receptor
development

Yes [28, 34, 120, 148]

PNS: branchial arches PNS: craniofacial development

Prdm4 CNS: cerebral cortex CNS: in vitro neural stem cell
proliferation and differentiation

Yes [149–151]

Prdm5 CNS: ventral spinal cord PNS: development of the
neuocranium

Yes [9, 152, 153]

PNS: neurocranium

Prdm6 CNS: spinal cord neurons Yes Yes [74, 154]

Prdm8 CNS: telencephalon, retina, tegmentum,
cerebellum, hindbrain and spinal cord

CNS: axonal outgrowth, neocortical
neuron morphology

No Yes [15, 47, 72, 74, 120,
155]

Prdm10 PNS: neural crest CNS: primary dendrite initiation [156, 157]

Prdm12 CNS: telencephalon, tegmentum,
cerebellum, midbrain, hindbrain
and spinal cord p1 domain

CNS: formation of V1 interneurons,
pain perception and sensory neuron
development

[73, 74, 81, 120, 158,
159]

PNS: cranial placodes

Prdm13 CNS: tegmentum, hindbrain, spinal
cord, retina

CNS: GABAergic interneuron
development

Yes [43, 74, 80, 120]

Prdm14 CNS: ventral spinal cord CNS: CaP motor neuron axonal
projection

Yes [46, 74, 120]

Prdm16 CNS: forebrain, telencephalon,
hindbrain, retina

CNS: olfactory neuron development Yes Yes [28, 34, 74, 120, 160]

PNS: craniofacial structures PNS: craniofacial development

Blank cells indicate categories were information is lacking in the literature. The list of expression domains and functions is not exhaustive
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Prdm genes are involved in mutually repressive
interactions between gene expression domains The
distinct boundaries observed between progenitor domains
in the neural tube are established by cross-repressive in-
teractions between adjacent gene expression domains
(Fig. 1). Several mutually repressive pairs of transcription
factors have been identified, including Pax6/Nkx2.2,
Dbx2/Nkx6.1 and Irx3/Olig2 ([64, 66, 68–70, 99–102];
reviewed in [53]). For instance, Irx3 and Olig2 repress
each other’s expression, thereby setting up the p2/pMN
boundary [69, 102]. Accordingly, knock-out of Olig2
causes a ventral expansion of Irx3 and leads the pMN do-
main to adopt more dorsal characteristics. Hence, this do-
main gives rise to V2 interneurons and astrocytes instead
of the motor neurons and oligodendrocytes that normally
arise from the pMN domain [102]. Given the expression
of Prdm genes in discrete domains along the dorsoventral

axis of the neural tube, it is likely that Prdm genes also en-
gage in mutually repressive interactions. For instance,
Prdm12b is expressed in the p1 progenitor domain and
shares an expression boundary with Nkx6.1—which is
expressed in the p2, pMN and p3 domains—at the p1/p2
border. Notably, loss of Prdm12b function leads to ec-
topic expression of Nkx6.1 dorsally [73], suggesting that
Prdm12b represses Nkx6.1 expression. However, it is
not clear if this effect is direct, nor is it clear if Nkx6.1
reciprocally represses Prdm12b expression. Further-
more, zebrafish Olig4 (Olig3 in mouse) is expressed in
the dP1-3 domains, where it is required for the specifi-
cation of dorsal interneurons [103–105], whereas
Prdm1a is expressed adjacent to Olig4 at the neural
plate border [106]. Knockdown of Olig4 results in a se-
vere reduction, or loss, of dorsal interneurons and a
corresponding increase in cell types normally specified
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by Prdm1a—neural crest cells and Rohon-Beard cells
[103, 105, 107–109]. Further studies confirmed that
Prdm1a represses Olig4 expression, and vice versa, to
establish and maintain the neural plate border and
interneuron domains [106]. As Prdm gene function in
the neural tube becomes analyzed more closely, it is
likely that additional cases of reciprocal repression will
be identified.

Prdm genes regulate neuronal specification and
differentiation in the neural tube Through their roles
as regulators of gene expression, Prdm family proteins
affect the specification and differentiation of neuronal
subtypes from various progenitor domains.

Prdm12b is required for the formation of V1
interneurons Prdm12 was originally described in chronic
myeloid leukemia as a gene located in a deleted region on
chromosome 9 [110, 111]. Prdm12 also plays a role con-
trolling proliferation in various cell lines [23]. Expression
of Prdm12 within the developing CNS was first described
in the mouse, with expression domains identified in the
ventricular zone of the telencephalon, as well as in distinct
domains within the hindbrain and spinal cord [74]. A
similar pattern is observed in the zebrafish neural tube—
specifically, Prdm12b expression is limited to the p1 do-
main in the hindbrain and spinal cord, as well as to cells
adjacent to the exit points of the ventral motor roots [73].
The spinal cord p1 domain gives rise to V1 interneurons,
a class of inhibitory glycinergic interneurons that func-
tion to regulate motor circuits controlling trunk and
tail musculature [112–117] and reviewed ([118]). V1 in-
terneurons are defined by their expression of the Eng1
gene [64, 115]. Disruption of Prdm12b function leads
to loss of Eng1b positive cells in zebrafish hindbrain
and spinal cord, suggesting that Prdm12b is required
for V1 interneuron formation. Strikingly, fish lacking
Prdm12b function, and therefore also lacking V1 inter-
neurons, display a defective escape response. In par-
ticular, when control fish are touched on the head, they
bend their body into a single C-turn—bringing their
head adjacent to the tail and orienting the head away
from the stimulus—and then swim away. In contrast,
Prdm12b-deficient fish exhibit multiple C-turns, display
a longer response time with less productive swimming
movements, and take longer between alternating body
bends [73]. Hence, Prdm12b is required for the forma-
tion of the p1 domain and p1-derived neurons, al-
though it remains unclear if the behavioral defect
results from the loss of V1 interneurons in spinal motor
circuits, or from the loss of some other class of p1-
derived neurons in the hindbrain.

Prdm14 controls formation of motor neuron axons
The pMN domain gives rise to motor neurons in a
process that appears to require Prdm14. In zebrafish,
four types of primary motor neurons (one of which is
transient) are generated in the spinal cord, including
CaP (caudal primary), MiP (middle primary), RoP (rostal
primary) and VaP (variable primary). A zebrafish mutant
for Prdm14, named short lightning (slg), was identified in
a gene-trap screen using the Tol2 transposon system
when a transposon inserted into the Prdm14 locus [46].
Strikingly, loss of Prdm14 does not affect the specifica-
tion of motor neurons. Instead, CaP motor neurons in
slg embryos display shortened axons and such embryos
exhibit impaired escape responses and diminished swim-
ming movements [46]. Prdm14 binds DNA via its zinc
finger domain [41] and has been shown to occupy bind-
ing sites upstream of the Islet2 gene [46], which is re-
quired for the development of motor neurons. Notably
Prdm14 is expressed in CaP and VaP motor neurons,
but not in MiP or RoP motor neurons. Similarly, Islet2 is
restricted to CaP and VaP, while Islet1 is maintained in
MiP and RoP, motor neurons. Hence, Prdm14 and Islet2
are co-expressed in CaP motor neurons, explaining why
the defects in slg mutants are restricted to this cell type.
Interestingly, Prdm14 and Islet2 are also co-expressed in
Rohon-Beard cells (a class of primary sensory neurons
found in zebrafish), but Prdm14 does not regulate Islet2
expression in this cell population. Instead, another Prdm
gene, Prdm1a, is expressed in Rohon-Beard cells where
it regulates Islet2 [46, 119]. Thus, Prdm14 regulates
Islet2 in CaP motor neurons and Prdm1a regulates Islet2
in Rohon-Beard cells, illustrating two examples of Prdm
genes controlling neuronal cell fate. We note that Prdm8
is also expressed in the pMN domain, but apparently
not in precursors of motor neurons [72] and it is there-
fore unlikely to control motor neuron formation.

Prdm13 controls formation of GABAergic neurons
Prdm13 is expressed in the dP6-dP2 progenitor domains
of the dorsal spinal cord [34, 43, 74, 80, 120]. Prdm13 is
both necessary and sufficient to promote differentiation
of inhibitory (GABAergic) neurons over excitatory (glu-
tamatergic) neurons [43, 80]. Specifically, Prdm13 re-
presses expression of Tlx1 and Tlx3 (excitatory lineage
genes) by directly binding to their regulatory regions, as
well as by binding to the Ascl1 transcription factor and
inhibiting its ability to activate Tlx3 expression (see
below for further details; [43]). Furthermore, Prdm13
blocks the ability of Neurogenin2 (another transcription
factor involved in neuronal specification; [121, 122]) to
activate transcription of Tlx3 [80].

Prdm8 controls targeting of projection neurons in
the telencephalon Prdm8 is expressed at multiple sites
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of the CNS, including the dorsal telencephalon and the
pMN-p1 domains of the hindbrain and spinal cord. Loss
of function analyses in the mouse revealed that Prdm8 is
required for proper targeting of several major axon
tracts (corticospinal tract, hippocampal commissure, an-
terior commissure and corpus callosum), apparently by
cooperating with the Bhlhb5 gene (see below for further
details; [47]).

Prdm family proteins form complexes with other
transcription factors to control gene expression
While it appears clear that Prdm family proteins act as
transcription factors to control neuronal differentiation,
it remains unclear precisely how they function. For in-
stance, Prdm12b regulates expression of Eng1b in V1 in-
terneurons, but it is not clear that Prdm12b binds DNA.
Furthermore, Prdm1a, Prdm12b, Prdm13 and Prdm14
all control transcription, but these proteins do not all
contain recognizable transcription regulatory domains.
The simplest explanation would be that Prdm proteins
act in complexes with other regulatory factors. Indeed,
there are now several reports of Prdm proteins interact-
ing physically with other transcription factors in larger
complexes.

Prdm13 interacts with Ascl1 to promote formation of
GABAergic neurons As discussed, Prdm13 is expressed
in the dP2-dP6 progenitor domains [34, 43, 74, 80, 120],
but appears to function primarily in dP4. In this region
of the neural tube, several bHLH proteins function to-
gether with various binding partners in a combinatorial
code to specify individual cell fates (reviewed by [123]).
Specifically, dP1, dP2, dP3 and dP5 give rise to excitatory
(glutamatergic) neurons, while dP4 gives rise to inhibitory
(GABAergic) neurons. The bHLH transcriptional activa-
tors Ascl1, expressed in dP3-5, and Ptf1a, expressed only
in dP4, are required for the formation of excitatory versus
inhibitory interneurons in dP3-dP5, such that Ascl1 alone
drives expression of the Tlx1 and Tlx3 genes to promote
excitatory interneuron fates in dP3 and dP5, while co-
expression of Ptf1a with Ascl1 in dP4 promotes inhibitory
interneuron fates by repressing Tlx1 and Tlx3 tran-
scription and promoting expression of Pax2 and Lbx1
[122, 124–133]. Strikingly, it appears that Ptf1a acts via
Prdm13 in dP4 to switch Ascl1 from a transcriptional
activator to a repressor. In particular, Ptf1a directly ac-
tivates Prdm13 expression in dP4 and Prdm13 binds
the same regulatory regions as Ascl1 at the Tlx3 gene
[43, 80]. Furthermore, Prdm13:Ascl1-containing com-
plexes can be detected by co-immunoprecipitation [43],
suggesting that such complexes regulate Tlx3 expres-
sion. Prdm13 also interferes with the ability of Neurog2
to activate Tlx3 [80], but it is not clear if this involves
the formation of a complex between Prdm13 and

Neurog2. Lastly, Prdm13 represses Tlx1 in the absence
of Ascl1 [43], suggesting that Prdm13 may also be a
transcriptional repressor in its own right, or that it may
interact with other factors in the regulation of Tlx1.
Prdm13 has been reported to exhibit methyltransferase

activity [80], but it is not clear if this activity is intrinsic
to Prdm13, or the result of a co-purifying factor. Indeed,
the Prdm13 PR domain—the domain with sequence
similarity to methyltransferases—is not required for its
ability to repress Tlx1 and Tlx3 [43], indicating that intrin-
sic methyltransferase activity is unlikely to be required for
Prdm13 to function as a repressor. In contrast, the
Prdm13 zinc fingers are required for it to function as a re-
pressor [43].
Notably, Prdm13 expression overlaps with the expres-

sion domains of other bHLH genes and it is therefore
possible that additional Prdm13:bHLH complexes may
form. For instance, Prdm13 expression overlaps with
Olig3 (Olig4 in zebrafish) expression in dP2 and dP3
[104, 105, 134, 135]. The dP2 and dP3 domains give rise
to Class A interneurons and loss of Olig3 function re-
specifies them to produce dP4 interneurons [104, 135].
Given the physical interaction between Prdm13 and the
bHLH factor Ascl1 in dP4, this raises the possibility
that Prdm13 and Olig3 could function as a complex in
the specification of dP2 and dP3, but this remains to be
explored.

Prdm8 acts in a complex with Bhlhb5 to control
neural circuit assembly The Bhlhb5 gene is closely re-
lated to the Olig subfamily of bHLH genes, but is
expressed in postmitotic neurons—particularly in excita-
tory neurons of the dorsal telencephalon [136, 137, 138].
Similar to the Olig proteins, Bhlhb5 appears to act as a
transcriptional repressor [139, 140]. Bhlhb5 mutant mice
exhibit axonal projection defects such that axons origin-
ating in the dorsal telencephalon fail to reach their tar-
gets (Joshi 2008). This phenotype is shared with Prdm8
mutant mice such that both mutants exhibit mis-
targeting of the main fiber tracts connecting the cerebral
hemispheres [47]. Importantly, Bhlhb5 and Prdm8 are
co-expressed in many populations of differentiating neu-
rons, including the dorsal telencephon, indicating that
they may function together. Indeed, further analyses re-
vealed that Bhlhb5 and Prdm8 proteins interact in a co-
immunoprecipitation assay and that the two proteins co-
occupy promoter elements in vivo, as defined by ChIP
analysis [47]. Strikingly, the same set of target genes is
up-regulated in Bhlhb5 and Prdm8 mutants, though the
mutants differ such that Bhlhb5 can bind targets in the
absence of Prdm8—but not vice versa. Hence, it appears
that Bhlhb5 binds DNA directly (most likely as a homo-
dimer via a canonical E-box motif ), but cannot repress
target genes in the absence of Prdm8, while Prdm8 is a
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repressor that cannot access target genes in the absence
of Bhlhb5. Among the Bhlhb5/Prdm8 target genes,
Cdh11 is expressed in several intermediate targets of the
corticospinal projections and is up-regulated in Bhlhb5
and Prdm8 mutant mice. Analysis of Bhlhb5/Cdh11
double mutants, which allows reduction of Cdh11 ex-
pression in the Bhlhb5 mutant background, revealed that
axonal targeting was partially rescued [47], suggesting
that Bhlhb5/Prdm8 regulates neuronal circuit formation
at least in part by controlling Cdh11 expression levels.
Bhlhb5 and Prdm8 are co-expressed at other sites in

the CNS. For instance, both genes are expressed in the
spinal cord p2 domain [72, 141, 142] and Bhlhb5 has
been implicated in specifying V2a over V2b interneurons
[141], suggesting that Bhlhb5:Prdm8 complexes may act
also in V2a differentiation. Furthermore, Bhlhb5 ex-
pression overlaps with the expression of other Prdm
genes—such as Prdm12 in the p1 domain and Prdm13
in the dP6 domain—and Bhlhb5 is involved in the specifi-
cation of interneurons from those domains [141, 142].
While this suggests potential interactions for Prdm12 and
Prdm13 with Bhlhb5, this remains to be tested.

Conclusions
Emerging principles for Prdm function in the developing
CNS
Embryogenesis is replete with transcription factor “codes”
and networks working in concert to specify and differenti-
ate various cell types. Here we have reviewed the function
of Prdm genes expressed within the neural tube, discussed
the known interactions between bHLH transcription fac-
tors and Prdm family members, as well as proposed add-
itional processes where members of these families are
expressed, function, and may directly interact. From this
review, some general principles are beginning to emerge.
First, many Prdm family genes function in the develop-
ing CNS. To date, five Prdm genes (Prdm1a, Prdm8,
Prdm12b, Prdm13 and Prdm14) have been shown to
control CNS development. Second, Prdm genes are
involved in multiple aspects of CNS development.
Prdm12b and Prdm1a play roles in early patterning by
controlling the formation of expression domain bound-
aries (Prdm12b controls the p1/p2 boundary and
Prdm1a the neural plate border; [73, 106]), while
Prdm13 acts on cell fate decisions to control the forma-
tion of inhibitory (GABAergic) over excitatory (gluta-
matergic) neurons [43, 80]. In contrast, Prdm14 acts
during motor neuron maturation to control proper
axonal outgrowth [46] and Prdm8 acts to control ap-
propriate axonal targeting during neural circuit forma-
tion [47]. Third, Prdm proteins function in complexes
with other transcription factors. In particular, Prdm8
functions by forming a repressor complex with Bhlhb5
in the dorsal telencephalon [47] and Prdm13 interacts

with Ascl1 to promote formation of GABAergic neu-
rons [43, 80]. These findings suggest a general model
where Prdm family members function in multi-protein
transcription regulatory complexes that control diverse
aspects of neural development—from the patterning of
expression domains and cell specification to axonal
projections and circuit formation.
Since the Prdm family is still relatively poorly charac-

terized and new members continue to be added, it is
likely that additional Prdm genes are involved in CNS
development—or that known Prdm genes will have add-
itional functions. As discussed, Prdm13 physically inter-
acts with the bHLH protein Ascl1 in the dP4 domain
[43], but Prdm13 is also co-expressed with another
bHLH protein—Olig3 (Olig4 in zebrafish)—in the dP1-
dP3 domains, suggesting that Prdm13:Olig3(4) com-
plexes may act in dP1-dP3. Similarly, both Prdm12b and
bHLHb5 are expressed in the p1 domain and play roles
in V1 interneuron specification [73, 74, 141, 142], indi-
cating they might interact in a complex. Perhaps even
more compelling, Bhlhb5 and Prdm8—that are known
to interact in the telencephalon—are also co-expressed in
the p2 domain (where Bhlhb5 has a known role in V2a
interneuron specification [141, 142]) suggesting that they
may act together in a complex also in the p2 domain.
There are several gene families with important roles in

early neural development. In particular, the bHLH, Pax,
Dbx, and Nkx families regulate neuronal cell fate specifi-
cation and differentiation [52, 53, 123, 143]. The data
reviewed here demonstrate that Prdm genes also have
essential functions in CNS development, thereby placing
the Prdm family alongside these other gene families as
key regulators of neural development. Strikingly, there
appears to be a particularly close relationship between
the bHLH and Prdm families (Fig. 2b) with Prdm pro-
teins having the ability to modulate bHLH protein func-
tion via the formation of protein complexes (e.g. Prdm8
binding with Bhlhb5 [47] and Prdm13 binding with
Ascl1 [43]).
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