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longitudinally.

Background: Longitudinal axons grow parallel to the embryonic midline to connect distant regions of the central
nervous system. Previous studies suggested that repulsive midline signals guide pioneer longitudinal axons by blocking
their entry into the floor plate; however, the role of midline attractants, and whether attractant signals may cooperate
with repulsive signals, remains unclear. In this study we investigated the navigation of a set of pioneer longitudinal
axons, the medial longitudinal fasciculus, in mouse embryos mutant for the Netrin/Deleted in Colorectal Cancer (DCQ)
attractants, and for Slit repellents, as well as the responses of explanted longitudinal axons in vitro.

Results: In mutants for Netrin1 chemoattractant or DCC receptor signaling, longitudinal axons shifted away from the
ventral midline, suggesting that Netrin1/DCC signals act attractively to pull axons ventrally. Analysis of mutants in the
three Slit genes, including Slit1/2/3 triple mutants, suggest that concurrent repulsive Slit/Robo signals push pioneer
axons away from the ventral midline. Combinations of mutations between the Netrin and Slit guidance systems
provided genetic evidence that the attractive and repulsive signals balance against each other. This balance is
demonstrated in vitro using explant culture, finding that the cues can act directly on longitudinal axons. The explants
also reveal an unexpected synergy of Netrin1 and SIit2 that promotes outgrowth.

Conclusions: These results support a mechanism in which longitudinal trajectories are positioned by a push-pull
balance between opposing Netrin and Slit signals. Our evidence suggests that longitudinal axons respond directly
and simultaneously to both attractants and repellents, and that the combined signals constrain axons to grow
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Background

Longitudinal axons connect regions of the central nervous
system by forming tracts that project long distances by
growing precisely along particular trajectories. In the
vertebrate embryonic brain stem, longitudinal axons
are the first neurons to initiate growth. These axons
originate in the midbrain and forebrain, and descend
longitudinally through the brainstem to pioneer a simple
scaffold of tracts [1-6]. Longitudinal trajectories require a
source of cues sustained along their ipsilateral trajectories.

* Correspondence: gmastick@unr.edu

Equal contributors

'Department of Biology, University of Nevada, 1664 N Virginia St, Reno,
NV 89557, USA

Full list of author information is available at the end of the article

( BiolMed Central

Because they project parallel to the longitudinal axis of
the brain stem, a potential source of cues for the pioneer
longitudinal tracts is the floor plate tissue along the ventral
midline, which produces long range and local cues [7].
Floor plate guidance cues have primarily been studied
for commissural axons, which grow toward and across
the midline using the floor plate as an intermediate target
[8,9]. The major secreted cues for vertebrate commissural
axons are Netrinl via its main attractive receptor Deleted
in Colorectal Cancer (DCC) [10-13], and the three Slits
via their family of repulsive Robo receptors, primarily
Robol and 2 [14-16]. Longitudinal axons grow parallel
to the floor plate but through the same environment as
commissural axons, and could be guided by the same
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attractive and repulsive signals. For repulsion, longitudinal
axons respond to the loss of Slit/Robo signals by shifting
into the ventral midline [17-20], or show altered fasci-
culation in other systems [19], and, furthermore, ventral
pioneer axons grow around to avoid ectopic patches of
Slit-expressing tissue [21,22]. In Drosophila, longitudinal
axons express different levels or combinations of three
Robo isoforms, a Robo code that sets the position of lon-
gitudinal axons from the midline [23-25]. A parallel Robo
code in mice has been proposed to guide post-crossing
spinal cord commissural axons [16,26]. However, Robol
and 2 appear to guide pioneer longitudinal axons in a
redundant, rather than code-like, manner [18,27].

The shift of longitudinal axons into the midline in Slit/
Robo mutants implies a strong midline attractive signal.
For this attraction, the most likely candidate is Netrinl.
Netrin mutations in fly and worm disrupt longitudinal
tracts [28-30]. However, Netrin loss in flies causes relatively
mild longitudinal errors, and combined mutants suggest
that Netrin is not the sole midline attractant accounting for
shifts into the midline in Robo mutants [23,31,32]. Other
midline attractants for vertebrate pre-crossing commissural
axons collaborate with Netrinl [33,34]. However, the role
of midline attractants for longitudinal trajectories remains
less defined, as are their potential interactions with Slit/
Robo repellents. In zebrafish embryos, Robo2/astray muta-
tions cause shifts of a specific population of dopaminergic
longitudinal axons into and across the midline, and this
midline attraction is Netrinl-dependent, as it is partially
suppressed by morpholino knockdown of either Netrinl or
DCC [20]. However, Netrinl or DCC knockdowns had no
effect in a wild-type background, leaving unresolved
whether Netrin/DCC signals have an independent attractive
role or are instead only active when Slit/Robo signals are
absent [20]. This second mechanism, implying Slit/Robo
gating of Netrinl/DCC signaling, is consistent with the
predominant silencing model, based on cultured Xenopus
commissural axons which use a sequential switch from
pre-crossing Netrin1l/DCC attraction to post-crossing
Slit/Robo repulsion [35]. This switch depends on Robo
silencing DCC through binding of their intracellular
domains [35]. However, in vivo genetic evidence in com-
missural and other axonal systems show independent
action of Netrin and Slit cues [31,36] or even Netrinl
dominance that suppresses or changes Slit responses
[37,38], suggesting that Netrin/Slit crosstalk can be diverse.

In this study, we set out to uncover the mechanisms by
which longitudinal axons maintain specific trajectories
along the dorsal-ventral (DV) axis in embryonic mice.
We focused on the medial longitudinal fasciculus (MLF),
pioneer axons that are the first to descend through the
hindbrain adjacent and parallel to the floor plate. MLF
axons are therefore exposed to high levels of Netrin and
Slit signals. We tested the roles of Netrinl and receptor
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signaling, and their potential interactions with Slit/Robo
signaling, by assaying MLF trajectories in mutant mice,
and examining direct in vitro influences on cultured
axons. Together, our evidence suggests that Netrinl
attraction and Slit repulsion are balanced against each
other to guide and promote the growth of longitudinal
pioneer axons along a precise pathway.

Results

Netrin1 is expressed along the path of the medial
longitudinal fasciculus

The MLF (medial longitudinal fasciculus) is one of the
first tracts to form in the vertebrate brain and becomes
a major conduit for fiber populations involved in motor
coordination [39]. The MLF is a prototypical longitudinal
tract, pioneered by a small group of axons that project in
a precise position adjacent and parallel to the floor plate.
To evaluate the position of the growing pioneers of the
MLF with respect to Netrinl, the Netrinl expression pat-
tern in the E10 mouse mid- and hindbrain was visualized
using in situ hybridization. Netrinl expression domains
include ventral midbrain around the cephalic flexure,
intensely in the floor plate of the hindbrain, and a domain
of lower expression extending away from the floor plate
into the lateral neural tube (Figure 1A). The high floor
plate and low lateral expression in the hindbrain closely
resembles expression in the spinal cord [10,40].

The MLF pioneers were labeled with neuron-specific
BIII-tubulin antibody, which showed that the nucleus of
the MLF arises in the ventral fore- and midbrain within
a region of strong Netrinl expression. The MLF runs
caudally (Figure 1B, arrow) through the midbrain and
hindbrain near the Netrinl-positive floor plate. Expres-
sion analysis also suggested that the MLF axons were
immunoreactive for DCC, the main attractive receptor
in many systems [13]. In addition, the hindbrain floor
plate expression of Netrinl overlaps with expression of
all three Slit genes [21], which together indicates that
the MLF axons are exposed to high levels of both
Netrinl and Slits as they project longitudinally adjacent
to the hindbrain floor plate.

Medial longitudinal fasciculus axons deviate dorsally in
Netrin1 mutants

To test the role of Netrinl in the guidance of longitudinal
axons, Netrin1 ™/~ mutant mouse embryos were examined
during the stage of active MLF outgrowth (embryonic day
10.5, E10.5) using whole-mount labeling with neuron-
specific BIII-tubulin antibody (Figure 2). Overall, in
Netrinl mutants, the main fascicle of the MLF shifted
away from the floor plate compared to wild-type and
heterozygous control embryos. Bundles of axons deviated
dorsally from the normal ventral position, leading to a
wider gap between the bilateral MLF bundles. (Note the
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Figure 1 Netrin1 and deleted in colorectal cancer receptor expression is closely associated with the medial longitudinal fasciculus in
the early brain. (A-C) Netrin1 expression pattern revealed by in situ hybridization (ISH) in embryonic day 10.5 mouse embryos. Side view of bisected
neural tubes. (A) The location of the nucleus of the medial longitudinal fasciculus ("MLF) is indicated (¥). (B) Close up showing axons, as labeled by
anti-3-tubulin, with respect to Netrin1 expression. The medial longitudinal fasciculus (MLF) travels through the Netrin1-positive region (arrow). (C) Cartoon
showing MLF (red) and Netrin1 expression. Dark blue is strong Netrin1 expression while light blue is weaker Netrin1 expression. (D,E) Deleted in colorectal
cancer (DCC) expression pattern, revealed by ISH for mRNA (D) and DCC antibody (Ab) labeling (E). The position of the nMLF is noted (*) in (D), and the
MLF bundle (arrow) in (E). Scale bar in (B) indicates 200 um; scale bar in (E), 200 um, applies to (A,D,E). mb, midbrain; op, optic vesicle; r1, rhombomere 1.

MLEF errors occurred in conjunction with apparently nor-
mal trajectories of hindbrain commissural axons crossing
the floor plate in Netrinl mutants, suggesting that pre-
crossing commissural axons are still attracted toward the
ventral midline in the absence of Netrinl. We are address-
ing this issue in a separate study).

The aberrant MLF trajectories in Netrinl mutants were
also analyzed by dil tracing from the midbrain source of
the MLF (Figure 2). In homozygous wild-type or heterozy-
gous controls, the MLF formed a tight bundle of axons
against the edge of the floor plate (Figure 2B,D). In
Netrinl mutants, the MLF axons had dorsal-angling
trajectories, and diverged into multiple bundles. The axons
in Netrinl mutants traveled at a significantly increased
distance from the floor plate, almost twice as far away
from the midline as normal (Figure 2G; quantification
strategy described in Methods, and in Additional file 1).
In fact many MLF axons diverged farther than the
ventral-most subset included in the quantification. The
dorsal shift in the absence of Netrinl suggests that
Netrinl acts as a ventral-ward attractive cue that keeps
the MLF near the floor plate. In addition, the wider tract
implies that Netrinl loss causes a large increase in the
variability (wandering) or fasciculation of MLF axons.

The shift in MLF position was also verified by DCC
antibody labeling at an earlier stage, E9.5, which showed
that the ventral-most DCC + axons shifted dorsally, and
that the overall numbers of longitudinal pioneer neurons
was normal in Netrinl mutants (Additional file 2). The
shift in MLF position was not the result of a wider floor

plate, because the floor plate on E9.5 embryos retained
the same width and expression of a floor plate marker
(Additional file 3).

An additional phenotype in Netrinl mutant embryos
was the appearance of prematurely truncated bundles of
axons (Figure 2E). These bundles were clearly visible in
both antibody and dil labels and occurred in both mid-
brain and hindbrain. All truncated bundles projected at
ventral angles. This phenotype was observed in most
Netrinl mutant embryos but no heterozygous or wild-
type embryos. These stalled axons suggest an additional
role for Netrinl in axon outgrowth promotion.

Medial longitudinal fasciculus axons deviate dorsally in
DCC mutants

To test which receptor was mediating Netrinl responses
in the longitudinal axons, we examined MLF projections
in mice with mutations in the main attractive Netrin
receptor, DCC.

In DCC mutants, MLF axons made errors that were
similar to Netrinl mutants (Figure 3). MLF axons in DCC
mutants shifted away from the floor plate. The average
distance was significantly increased over controls, but was
also significantly less than the Netrinl mutants (Figure 3E).
Some bundles deviated dorsally, creating bifurcations in
the tract, although the total breadth of the tract appeared
more compact than Netrinl mutants. The difference be-
tween Netrinl loss-of-function and DCC loss-of-function
suggests that DCC mediates part but not all of the guid-
ance activity of Netrin1.
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Figure 2 Medial longitudinal fasciculus axons shift away from the midline in Netrin1 mutants. Views of the medial longitudinal fasciculus
(MLF) axons growing through hindbrains from mouse embryos, shown as open-book whole mounts of the anterior hindbrain, with the ventral midline in
the middle. (A,C,E) MLF axons in Netrin1**, Netrin1™", and Netrin1™~ embryos on embryonic day 105 visualized by whole-mount Blil-tubulin antibody la-
bels. The pair of MLF bundles on either side of the midline are indicated by the arrow heads (A). Netrin1** and *~ embryos had normal MLF projections
parallel to and close to the floor plate. (E) Netrin1 ™~ embryos had aberrant MLF projections, including an increased distance from the floor plate, and trun-
cated axon bundles (arrow) that split off from the main tract. (B,D,F) MLF axons labeled by a single crystal of the fluorescent axon tracer dil in the midbrain
MLF nucleus in control and Netrin1™~ embryos. Dashed lines mark the ventral midline, centered in the floor plate. (G) Quantification of MLF distance from
the midline. The distance of the ventral-most MLF axons from the midline in dil-labeled embryos was normalized for embryo size to compensate for slightly
different developmental stages (normalized distance = MLF distance/width of neural tube). (Quantification strategy is further described in Additional file 1).
MLF axons were nearly twice as far away from the midline in Netrin1™~ mutants (n = 7), compared to Yt (h=5and ¥ (n=7) embryos. Error bars show
SEM; significance was measured using the t-test. **P < 0.01. ns, not significant. Scale bars in (E) and (F) indicate 200 um, and apply to each row of images.

Medial longitudinal fasciculus axons shift toward the floor  signals. Slitl, 2, and 3 were good candidate repellents,
plate when Slit signals are reduced because our prior study showed that Slitl and 2 prevent
The shifts of axons away from the ventral midline in ~MLF axons from entering and crossing the midbrain
Netrinl or DCC mutants suggest that reduced midline floor plate, at least in the midbrain where these are the
attraction may cause sensitization to midline repellent only two Slits expressed during MLF pioneer navigation
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Figure 3 Medial longitudinal fasciculus axons shift away from the midline in deleted in colorectal cancer receptor mutants. (A-D) Deleted in
colorectal cancer (DCC) mutant and control embryonic day 10.5 embryos labeled by whole-mount lli-tubulin antibody (A,C) and dil labels (B,D). (E) Axon
positions were quantified, normalized for variations in embryo size, and compared to the Netrin1 data from Figure 3. Medial longitudinal fasciculus axons
shifted dorsally in DCC™~ mutants (n = 12), compared to controls (DCC™*, n=9; DCC*~, n=9), but significantly less than in Netrin1 mutants. Error bars
show SEM; significance was measured using the t-test. *P < 0.05; **P < 0.01. Scale bar in (D) indicates 200 um and applies to (A-D).
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[18]. However, the hindbrain is potentially a different
guidance environment, because Slit3 is expressed in com-
bination with Slitl and 2. Consistent with the potentially
overlapping Slit functions in the hindbrain, Slit1/2 double
mutants have less severe errors in this region, with some
MLF axons crossing but few longitudinal projections
within the floor plate itself [18]. These results suggested a
midline inhibitory role for Slitl and 2, but did not give a
complete test of Slit function in the hindbrain due to the
presence of Slit3. In addition, the previous analysis did
not give insights into whether Slits were acting as local
non-permissive cues to keep longitudinal axons out of
the midline, or whether they acted as diffusible instructive
cues to guide ipsilateral trajectories.

Therefore, we undertook an analysis of the genetic
function of Slit3, in concert with Slitl and 2, by analyzing
a series of combinations of Slitl, 2, and 3 mutations.
Triple homozygous mutants were reported in one prior
publication [16].

We reasoned that informative effects on longitudinal
trajectories might result from partial reduction of Slit gene
dosage, with the prediction that reduced Slit function
would lead to a less repulsive floor plate, and cause MLF
axons to shift ventrally. To test the effects of reducing Slit
expression, we examined mouse embryos with different
Slit allele doses (Figure 4). The genetic background of all
lines was Slit1~"~, which on its own results in normal MLE

projections [18]. By varying Slit 2 and 3 dosage, embryos
were produced with one to four functional Slit alleles.
Analysis of axon patterns was done primarily with whole-
mount PIII-tubulin antibody labeling (Figure 4A-D), and
axon patterns were further verified using specific dil
tracing of the MLF (Figure 4E-H). Ventral shifts in MLF
positions were evidenced by narrowing of the space
between the flanking MLF bundles, with the strongest
effects in rhombomere 4 (r4), where MLF positions
were quantified. Reducing Slit dosage resulted in a graded
narrowing of the distance between MLF bundles. Embryos
with only one functional Slit allele had the largest average
ventral shift of the MLF. Interestingly, Slit1™~/~2*/%37~
embryos with a single Slit2 allele had MLF positions
farther from the midline than in Slit1”~27/53"/~ embryos,
which was the most strongly affected genotype. Similar
Slit dosage effects were seen in other hindbrain segments,
though less dramatically than in r4 (not shown). Tracing
of the MLF axons showed that midline crossing occurred
in embryos with only 1 or 2 Slit alleles, and again a single
Slit2 wild-type allele was more effective than a single Slit3
wild-type allele (Figure 4EG).

Finally, Slit1/2/3 triple homozygotes had a strong shift
of all MLF axons into the midline, with prominent longi-
tudinal projections within the floor plate (Figure 4H).
The shift of MLF axon trajectories into the midline is
very similar to the axon errors in Robol/2 double
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Figure 4 Medial longitudinal fasciculus axons shift toward the midline in a Slit dose-dependent manner. (A-C) Close-up views of the midline
in rhombomere 4 (r4) in embryonic day 10.5 mouse embryos stained with Blll-tubulin antibody. The position (yellow line) of the most ventral medial
longitudinal fasciculus (MLF) axons was quantified. (A) Embryos with four Slit doses as littermate controls for the normal MLF distance from midline in
r4. (B) Slit mutants with only one remaining dose of Slit2 caused the most ventral MLF axons to shift toward the midline. (C) One dose of Slit3 caused
a severe phenotype in which a subset of MLF axons had angling trajectories that crossed the midline. In these cases, subsets of axons which did not
cross but maintained longitudinal trajectories were used to measure the MLF distance from midline. (D) Average normalized distance from the midline
to the most ventral MLF fibers in r4 decreased gradually with loss of Slit doses. The number of embryos (n) is a sum of different combinations of Slit2
and 3 wild-type alleles, with 6 to 11 analyzed for each genotype (indicated on each bar). Error bars show SEM. Differences between genotypes were
statistically significant by analysis of variance (P < 0.005). The trend in MLF position was significant by an ordered heterogeneity test (P < 0.0001) (see

Methods). (E-H) Slit triple mutants. Bilateral dil tracing of MLF axons in littermates with decreasing Slit doses. Embryos with only one dose of either
Slit2 or Slit 3 causes a subset of axons to cross the midline. Sit1/2/3 triple mutant embryos (n = 6) had a complete collapse of MLF axons into and
projecting longitudinally within the floor plate. Scale bar in (C) also applies to (A-C): 100 um; scale bar in (H) also applies to (E-H): 100 um.

mutants (for example, see Figure 5C), supporting the
idea that these two Robo receptors are the primary
repulsive Slit receptors for longitudinal axons [18,27].
The graded shift in MLF positions caused by reducing
Slit gene dosage implies that the three Slits act together
to form a repulsive gradient to push MLF axons away
from the midline.

Medial longitudinal fasciculus trajectories in vivo are

guided by a balance between Netrin1 and Slit/Robo signals
The analysis of Netrin/DCC and Slit/Robo guidance of
the MLF pioneers suggests that the shifts in the MLF

trajectories in these mutants are caused by an imbalance
between attraction and repulsion. In Netrinl or DCC
mutants, the axons shift away from the floor plate, suggest-
ing that repulsion is stronger than attraction. Conversely,
the axons shift closer or into the floor plate in Slit or Robo
mutants, suggesting an environment in which attraction is
stronger than repulsion. However, while the opposing shifts
caused by reducing either attraction or repulsion alone are
consistent with a balancing mechanism between Netrin
and Slit cues, we sought additional genetic evidence for the
in vivo relevance of this balance. If the axons shift into the
floor plate in Robol/2 mutants because they are strongly
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Figure 5 A balance between Netrin and Slit/Robo signaling sets the in vivo position of medial longitudinal fasciculus axons. Combined
mutants between Netrin1, Robo1, and Robo2. (A-F) Whole-mount open book preparations stained with Blll-tubulin antibody. (Key genotypes with
significant phenotypes are shown; several classes of heterozygous combinations did not cause medial longitudinal fasciculus (MLF) shifts, and are
not shown). (A-C) Compared to the control MLF (wild type in (A), n=4), the MLF shifted away from the midline in Netrin1™~ mutants (B, n = 3).
In Robo1/2 mutants, the MLF shifted toward the midline and, in addition, many axons entered and grew longitudinally within the midline (C, n =4).
(D) When Robo1/2 function was reduced in a Netrin1 mutant background, Netrin1™~; Robo1" 2"/, the MLF maintained a similar dorsal shift (n = 1).
(E) When Netrin1 function was reduced in a Robo1/2 mutant background, Netrin1*/~; Robo1™ 727", the MLF tracts shifted to a near-normal position,
and the number of midline axon bundles was reduced (n=7). (F) A single triple mutant embryo was isolated, showing an MLF pattern similar
to wild-type, with neither dorsal or ventral shifts (n=1). (G) Schematic summary of longitudinal pioneer patterns in key genotypes. (H) Graph
of average normalized distance from the midline to the most ventral MLF fibers. All means differed significantly by analysis of variance (P < 107), and
by pair-wise t-tests. Scale bar in (F) also applies to all: 100 pm.
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attracted to Netrinl, then a reduction in Netrin] attraction
is predicted to suppress the shift of axons into the floor
plate. Similarly, the shift of axons away from the floor plate
in Netrinl mutants should be alleviated by a reduction of
Slit/Robo repulsion.

We took an in vivo genetic approach by attempting
to make combined mutants between the two guidance
systems, which have not previously been reported. Prac-
tical considerations guided us to make Netrinl; Robol;2
triple mutants. We chose Netrinl mutants to test attrac-
tion, because the homozygous Netrinl mutant phenotype
was stronger than DCC. For testing Slit/Robo repulsion,
Robol/2 mutants were used because the two genes are
closely linked and segregate as one mutant allele, simplify-
ing the genetic crosses. Importantly, genetic evidence
suggests that Robol and 2 are the dominant Slit receptors
for MLF axons, because the axons strongly enter the floor
plate in Robo1/2 homozygous mutants [18,27], which is
similar to Slit1/2/3 triple mutants (Figure 4).

When Netrinl function was reduced in the Robol/2
mutants (that is, Netrin1*/~; Robol™7;27/") both of the
Robol/2-dependent MLF axon phenotypes were less se-
vere (Figure 5E). The remnant MLF shifted back nearly
to the wild-type position, with larger, more prominent
bundles. In addition, the longitudinal bundles within the
midline were less prominent and involved fewer axons.
This suggests that the MLF midline entry and ventral
shift in Robol/2 mutants is dependent on ventral-ward
Netrinl attraction.

We also attempted to reduce Robol/2 function in
Netrinl homozygous mutants. Unfortunately, after many
litters from crosses between triple heterozygotes produ-
cing a total of 99 embryos, the distribution of genotypes
indicated a strong lethal genetic interaction between the
Netrinl and Robol/2 mutant alleles. In the Netrinl ™~
background, when Robol/2 gene dosage was reduced by
half (that is, Netrinl~~; Robol1*'7;2*'") only one embryo
was isolated (1/99), instead of a predicted 1/8 ratio. The
low yield suggests a genetic requirement of all three
genes for viability at an embryonic stage prior to E10.5.
We also set up lines to combine Netrin mutations with
either single Robo mutant (that is, Netrin1™~; Robol*’~
and Netrinl~'~; Robo2*'") but these also produced lethal
interactions because we were unable to isolate double
homozygotes from either cross (not shown). We speculate
that the Netrin/Robo lethal interaction may involve non-
neuronal tissues, such as tissue movements during gastru-
lation [41,42], or early vascular or placental development
[43-46). Nonetheless, in the unique Netrinl™'~; Robol™;
2"/~ mutant embryo, the MLF retained a shift away from
the midline similar to Netrinl”~ mutants (Figure 5D).
This result suggests that Robol/2 heterozy-gotes retain
sufficient Slit/Robo repulsion to push the MLF axons away
from the midline.
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The ultimate goal of combining Netrinl, Robol, and
Robo2 mutations also unfortunately resulted in only a
single triple homozygote, Netrin1~~; Robol /727", iden-
tified on E10.5 (thus also 1/99 instead of a predicted 1/16).
Strikingly, this remaining embryo had MLF tracts formed
at positions close to wild-type (Figure 5F). No MLF axons
entered or projected longitudinally within the floor plate.
Thus, the Netrinl mutant shift away from the midline was
suppressed by removing Robol/2 repulsive function. A
complementary interpretation is that the Robol/2 mutant
shift toward and into the midline was suppressed by
removing Netrinl attractive function. The axon patterns
are consistent with the partial restoration of MLF position
in Netrin1*'~; Robol™ 27/~ mutants. Together, these ob-
servations of combined Netrinl and Robol/2 mutants are
consistent with a guidance mechanism in which Netrinl
and Slit/Robo signals act in balance to position the MLF
axon trajectories.

As a side note, to attempt to bypass the triple mutant
lethality, we also combined Netrinl mutations with each
individual Robo (that is, Netrinl*'~; Robol*/~ crosses in a
Robo2"* genetic background, and Netrin1*'~; Robo2*'~
crosses in a Robol*’* genetic background). Although we
did not pursue this as exhaustively as for the triple
mutants, no double homozygous mutants in either back-
ground were identified (not shown), suggesting the same
lethal genetic interaction between Netrinl and either
Robol or Robo2.

Medial longitudinal fasciculus axons can react directly in
culture to combined Netrin1 and Slit signals

The analysis of mutant mice indicates that Netrin and
Slit signals have important genetic functions in positioning
MLF axons in vivo. These results specifically imply that
these longitudinal axons can respond to both attractive
and repulsive signals simultaneously. However, the in vivo
phenotypes could result from direct or indirect effects. To
test for direct effects of isolated Netrinl and Slit signals,
we established an explant culture system for MLF axons.
Small pieces of ventral midbrain tissue containing the
nucleus of the MLF were embedded in collagen gels
and cultured. Although specific molecular markers for
MLF axons are not available, all axons growing out of
the explants did label with DCC antibodies as expected
for the MLF (Figure 1D; Figure 6).

Ventral midbrain explants were co-cultured in the
presence of COS cells transfected with secreted forms of
Netrinl or Slit2 (Figure 6). Axons cultured in the pres-
ence of control COS cell aggregates transfected with
YFP had no directional influence. Netrinl-transfected
COS cells had a positive effect on the direction of axon
growth: axons grew toward Netrinl-expressing aggregates.
In contrast, MLF axons had strong inhibitory responses
to Slit2 because they grew away from Slit2-expressing
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Figure 6 Netrin1 and Slit2 have opposing effects on direction, and synergistic effects on growth, of explanted medial longitudinal
fasciculus axons. Tissue was dissected from ventral midbrain of embryonic day 11.5 mouse embryos, placed in collagen gel, and cultured for 48
hours with guidance cues. (A-D) Ventral midbrain explants were co-cultured with aggregates of (COS) cells transfected with no plasmid (mock,
n=10), Netrin1 (n=10), or Slit2 (n = 6) expression plasmids. To combine Netrin and Slit signals, equal amounts of transfected cells were mixed to
form aggregates (n = 12). Each explant is shown with the transfected COS aggregate at the top of the photograph (dashed lines). Axons were
labeled with anti-deleted in colorectal cancer (DCC) antibodies, to avoid other nearby neuron types that may have been inadvertently included in
the explanted tissue (for example, the DCC-negative oculomotor neurons). (E) Quantification of directional axon growth into quadrants toward or
away from the COS cells. An outgrowth ratio was calculated by dividing the average axon length in pixels in the quadrant toward the cue source,
divided by the quadrant away from the cue source. Note the neutral effects of untransfected COS cells, attraction by Netrin1 cells, and repulsion
by Slit2 cells. Mixed aggregates secreting both Netrin1 and Slit2 had neutral directional effects, but caused a prominent increase in overall axon
growth. The number of explants analyzed is shown on each bar, and also applies to graphs (F) and (G). (F) Graph of average axon length in the
quadrants toward and away from the cue source. (G) Graph of overall axon outgrowth, showing the sum from both quadrants. Note the significantly
increased growth when Netrin1 and Slit2 signals were combined. Errors bars show + SEM. Statistical comparison by t-test: *P < 0.05; **P < 0.01. Scale

bar in (D) also applies to all: 100 um.

aggregates. These effects suggest that MLF axons can re-
spond directly to Netrin and Slit signals, with opposing re-
sponses consistent with their in vivo effects.

To more closely reflect the situation in vivo, explants
were cultured adjacent to COS aggregates secreting both
Netrinl and Slit2 (Figure 6). The presence of Netrinl
counteracted the repulsive effects of Slit2, resulting in
symmetrical growth, which is evidence that MLF axons
can simultaneously react to the two opposing signals.
Surprisingly, the axons of explants exposed to an over-
lapping gradient of both Netrinl and Slit2 were longer
than those challenged with either single cue (Figure 6G).
This indicates a synergistic effect of Slits and Netrinl
on MLF outgrowth, in addition to the individual in-
structive positive and negative signals. Together, the
explant experiments indicate that Slits and Netrinl
cooperate to both guide and promote the outgrowth of
MLF axons.

Discussion
Longitudinal axon trajectories maintain precise positions
relative to the DV axis of the neural tube, so rather than
having one decision point at an intermediate target, longi-
tudinal axons need continuous guidance input. Our results
suggest that pioneer MLF trajectories are set by the com-
bined action of Netrinl and Slit signals. This navigation
mechanism depends on a counter balance of attractive and
repulsive cues, integrated simultaneously in a “push-pull”
manner, to guide axons longitudinally at a specific position.
MLF axon responses in culture further suggest that the
combined signals synergistically increase the growth rate of
these axons. The importance of a balance between these
opposing cues is supported by several lines of evidence.
Our first major finding was that Netrinl loss caused
longitudinal axons to wander dorsally. Even the ventral-
most axons in mutant embryos were significantly farther
away from the floor plate than wild-type axons, and many
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axon trajectories diverged farther. Additionally, bundles
with prematurely truncated axons indicate a growth-
promoting function, which was further supported by
observation of outgrowth towards a Netrinl source in vitro.
Netrinl has at least two positive effects on MLF axons,
which together serve to position and promote the growth
of the MLF near the floor plate. A major Netrin receptor
for longitudinal axons appears to be DCC, because DCC
mutant axons shifted significantly away from the midline.

Slit signaling is also critically important for positioning
longitudinal pioneer axons as an opposing repellent. Our
previous study of Slit1/2 mutant mouse embryos showed
that Slits are required to prevent MLF entry into and
crossing of the floor plate in the midbrain [18]. Blocking
midline entry could be accounted for by a local inhibitory
role of Slits within floor plate tissue. Here, we extended
these findings to show that reduced Slit gene dosage
causes MLF axons to shift toward the floor plate. This
observation implies that Slits can act not just locally but at
a distance, and in a graded manner. As Slits can also
act at a distance on axons in culture, together these results
suggest that Slit signals position MLF axons by repelling
them away from the ventral midline.

Since MLF axons respond to the Slits and Netrinl
simultaneously along their trajectory, we propose that a
combination of repulsive and attractive cues position
pioneer MLF axons to navigate within a narrow zone
adjacent to the floor plate. MLF axons are pushed away
from the floor plate by Slit signals, and pulled toward
the floor plate by Netrinl signals. This model explains why
weakening either the positive or negative signals causes
MLEF shifts: releasing axons from the ventral attraction
causes dorsal shifts driven by Slit repulsion, and releasing
axons from the ventral repulsion causes ventral shifts
driven by Netrin attraction. To formally test this mechan-
ism, we combined mutations between Netrinl and Robol/
2, which partially or wholly suppressed the axon errors
caused by loss of either of the single pathways. The positive
synergy of Slit and Netrin on outgrowth rates in vitro
further indicates that MLF axons can respond simultan-
eously to both sets of cues, and consistent with the region
near the floor plate providing a growth-promoting envir-
onment for the rapidly advancing MLF axons. Another
important implication is that silencing via a Robo-DCC
hierarchy does not appear to occur in longitudinal axons.
The key prediction of the silencing model is that if Slit/
Robo signaling silences DCC-mediated attraction, then
the presence or absence of DCC (or Netrinl) should have
no effect on MLF guidance. However, mutants for either
Netrinl or DCC have major MLF shifts, showing that
Netrin1/DCC signaling is active and critical for MLF navi-
gation, despite the fact that they are growing next to the
floor plate where they are exposed to the highest possible
levels of Slit repulsion.
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The mechanism of longitudinal guidance by balanced
Netrin and Slit cues in mouse embryos extends, in several
ways, a previous report on the guidance of longitudinal
axons through the zebrafish hindbrain [20]. That study
showed that a different longitudinal axon population, which
is dopaminergic and descends through the hindbrain at a
more dorsal position, shifted toward the ventral midline in
Robo2/astray mutants [20], consistent with Robo guidance
being critical to keep mouse longitudinal axons out of
the midline [18]. However, single knockdowns of either
zebrafish Netrin, DCC, or combinations of the Slits did
not perturb longitudinal guidance in a wild type genetic
background [20]. The zebrafish experiments did suggest
that Netrin/DCC and Slit/Robo signaling was involved
in the Robo2-dependent positioning of tracts, because
Netrin or DCC morpholino knockdown in Robo2 mutants
was effective at suppressing the mutant shift toward the
midline. Our results provide a more comprehensive test of
how these cues guide the mouse MLF, because mutants
for Netrinl, DCC, or the Slits do have longitudinal shifts,
and explants also confirmed that the cues can act directly
on cultured axons. The absence of zebrafish phenotypes
for several of the key molecules may be due to partial
knockdown via morpholinos, which agrees with our ob-
servations that heterozygous mouse embryos maintained
normal tract positions. However, it should also be noted
that the zebrafish mutants or knockdowns perturbed
only a specific dopaminergic axon subpopulation, while
strikingly the zebrafish MLF axons appeared to project
normally [20]. The comparison of these mouse and zeb-
rafish studies emphasizes that a good understanding of
longitudinal guidance mechanisms will require additional
axon populations to be studied in a variety of experimental
approaches.

An interesting implication of the push-pull mechanism
is that it provides a general strategy for DV positioning
of axon populations, where increased relative attraction
to Netrinl could override Slit repulsion to result in a
ventral position, or increased repulsive responses to Slits
would result in more dorsal positions. For example,
increases in Robo3 expression appear to interfere with
Robo-mediated repulsion to cause shifts in zebrafish
longitudinal tract positions [47]. However, evidence sug-
gests that shifts in axon responses are unlikely to be
simply regulated by receptor levels on axons or growth
cones. On one hand, MLF axons show the brightest
DCC labeling of the pioneer descending tracts, which
could mediate strong attraction ventrally. On the other
hand, Robol expression also appears highest in MLF
[18,27], so the position of the MLF as the ventral-most
tract is not simply explained by an imbalance of attractive
receptors over repulsive receptors. This suggests that recep-
tor signaling may be modulated in other ways such as cell
surface localization or downstream signaling modulators.
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Longitudinal navigation involves the integration of posi-
tive and negative cues that are opposed, and potentially
confusing. Binding of either Slits or Netrin to their recep-
tors sets off a cascade of intercellular events that affect
multiple pathways [48,49]. Interestingly, Netrin and Slit
signal transduction pathways have opposing effects on
common components such as the small GTPase Cdc42
[50,51]. Other potential switches between attraction and
repulsion include cyclic nucleotide levels and calcium
levels [52]. Thus, converging signals could be integrated
to provide a fine-tuned response to opposing Slit and
Netrin signals. Future experiments on receptor signaling
mechanisms and the cell biology of growth cones will be
needed to reveal integration mechanisms for longitudinal
guidance.

The restoration of a normal MLF projection pattern in
the combined Netrin1l/Robol/2 triple mutant is an intri-
guing example of the ability of axons to continue to
navigate, even in a “ground-state”, devoid of Netrin1/Slit
guidance. That the axons can overcome the loss of their
main guidance cues suggests that additional signals likely
also play roles in longitudinal navigation. These may
include other midline attractants such as Sonic hedge-
hog (Shh) or vascular endothelial growth factor (VEGF)
[33,34], midline repellents such as Semaphorins [53],
and directional cues along the anterior-posterior axis
such as Wnts or Shh [54-57]. Axon-axon interactions also
play a role in regulating the cohesion of longitudinal tracts
[19]. Further evidence that long range cues can act by
modulating axonal expression of adhesion molecules
suggest important interactions between long range and
local guidance mechanisms [53].

Studies from a range of systems suggest that Netrin
and Slit cues can be interpreted by axons in diverse
ways. In fact, the initial nematode Netrin mutants were
identified by errors in circumferential axons [28], which
grow away from Slit and toward Netrin, implying both
cues act simultaneously and cooperatively on these
axons [29,58,59]. In Drosophila, Slit and Netrin cues are
secreted together from the midline, but genetic analysis
suggests that they signal in parallel in an additive man-
ner, rather than in a hierarchical silencing mechanism
[31]. Other systems have hierarchical cue interactions
which are quite distinct from silencing. For example,
mouse thalamocortical axons are repelled when pre-
sented by Slits alone, and do not react to Netrinl alone,
but Slit switches to attraction in the presence of Netrinl
to promote projections into the rostral cortex [37]. This
switch in thalamocortical responses requires a novel
Robol co-receptor, FLRT3, which acts to upregulate
DCC as an attractive Netrinl receptor [60], but it remains
unknown whether these receptor interactions have wider
roles in other axon populations. Netrin and Slit cues inter-
act differently in the mouse corpus callosum, where
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neocortical axons again do not react to Netrinl alone, but
Netrin1/DCC signaling instead attenuates Slit repulsion,
allowing midline crossing [38]. Similarly, DCC inhibits
Slit/Robo repulsion of precrossing axons in zebrafish spinal
cord, allowing them to approach the midline [61]. Together,
the diversity of potential axonal reactions to just this pair of
cues is impressive, as their interactions can be hierarchical
in either direction, cause switching of repulsion to attrac-
tion, or can be balanced in a non-hierarchical fashion,
as we show for longitudinal pioneers. It seems likely that
additional novel interactions between axon guidance
signals are critical for axon circuit formation.

Conclusions

Our evidence indicates that longitudinal axons navigate
using simultaneous Netrinl/DCC and Slit/Robo signals
to set their trajectories. This push-pull mechanism suggests
that longitudinal axons integrate the opposing signals
through a balance that constrains their growth into longitu-
dinal trajectories at specific positions. Overall, our results
build upon the model that the molecular landscape of guid-
ance cues laid out in embryonic brain tissue is interpreted
in various ways by different types of axons to generate
diverse and specific patterns of tracts to wire the brain.

Methods

In situ hybridization

Whole mount in situ hybridization was carried out
using standard procedures [62]. Probes for Netrinl and
Slitl were provided by Marc Tessier-Lavigne (Rockefeller
University, New York, NY). DCC probes were generated
by reverse transcription-PCR, using procedures previously
described [63].

Immunohistochemistry

Neural tubes were dissected from the rest of the embryo,
and washed for several hours in PBS containing 10%
FBS and 1% TritonX (PBT + serum). Primary antibody in
PBT + serum was applied for 1 to 3 days: rabbit anti-BIII
tubulin (Covance, Princeton, New Jersey; 1:1000), goat anti-
DCC (Santa Cruz, Dallas, TX; 1:250). After washing in
PBT + serum overnight, secondary antibodies (Jackson Im-
munoLabs, West Grove, PA) were applied in PBT + serum
at 1:200 for 1 to 2 days, followed by overnight washes.

Mouse embryos

Animal experiment protocol #00435 was approved by the
University of Nevada, Reno, IACUC, following guidelines
of the National Institutes of Health, and accredited by
the Association for Assessment and Accreditation of
Laboratory Animal Care International. Expression analyses
were performed with CD1 embryos. Netrin mutants were
previously described, and genotyped by a combination
of PCR amplification of the lacZ gene trap insert,
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intensity of Xgal labeling of embryonic spinal cord tissue
(see Additional file 4), or examination of commissure for-
mation in the embryonic spinal cord [64]. The Netrinl™/~
hindbrain floor plate appeared normal using the 4C7
antibody (DSHB) against HNF3b/FoxA2. DCC mutants
were previously described, and genotyped by PCR [13].
Slit17/7; Slit2*'; Slit3*'~ triple mutant founder mice were a
gift from Marc Tessier-Lavigne, (Rockefeller University)
[15,16,65], and were mated to produce embryos with
Slit1™~ genotypes combined with various doses of Slit2
and Slit3.

To obtain Netrinl/Robol/Robo2 triple mutants, Netrin1*'~
heterozygotes were first mated with mice carrying the
linked Robol/2 heterozygous mutations, and then the
resulting Netrin1*/~; Robol*’~; Robo2*/~ triple hetero-
zygotes were intercrossed to maintain the new strain
and to generate embryos. The embryos were genotyped
by PCR of both Robol and 2 alleles, combined with
histological examination of commissure formation in
the embryonic spinal cord to verify the Netrinl geno-
type. It is unlikely that the rarity of the triple mutant
combination (1/99) was caused by a general vascular
defect, because the embryos did not appear hypoxic
within our triple het litters of embryos, and no “moles”
were included in our analysis. Second, somites were
counted for all of the embryos analyzed, and were
within the expected range of development.

Embryos were collected on E10 or E10.5, with noon of
the day of the vaginal plug designated as E0.5. The lipo-
philic fluorescent axon tracer Dil was used as previously
described [5,66] to label the midbrain nucleus of the
MLF and trace MLF axon trajectories as they descended
through the hindbrain.

Quantification of normalized distance from the midline
The distance of the ventral-most axons from the midline
in Dil and PBIII-tubulin labels was measured at regular
intervals along the length of the neural tube using Image]
from NIH (Bethesda, MD; see Additional file 1). For the
Netrin analysis, to normalize for embryo size, distance
from the midline was divided by the total DV width of the
neural tube as measured at the boundary between r1 and
r2. The average normalized distance for each embryo
was then used to perform statistical analysis by analysis
of variance (ANOVA), which found that the means were
significantly different, and by ¢-test.

For the analysis of MLF position in Slit mutants, mea-
surements between the MLF fascicles of PIII-tubulin
labeled embryos were halved to represent average distance
from the midline, and expressed as ratios as above.
The numbers were pooled for Slit wild-type allele dose,
ranging from 4 to 1. The four groups of means were com-
pared by ANOVA, which found that the means were
significantly different at P <0.005. As another statistical
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comparison, the decreasing trend of the means as Slit
doses decrease from 4 to 1 was analyzed by an ordered
heterogeneity test [67], in which the expected rank order
was found to be the same as the observed rank order, with
a confidence level of P < 0.0001.

The MLF position in Netrinl/Robol/Robo2 triple mu-
tants was quantified by the same strategy, and the means
for different genotypes were found to be significantly
different by ANOVA (P <107°), and by appropriate pairs
of t-tests.

Explant co-culture

Ventral mid- and forebrain tissue of E11.5 embryos was
dissected to include the source of the MLF, and to
exclude the medial-most tissue containing motor neurons
of nllIl. Culture conditions for explants were as described
previously [33]. To provide localized Netrinl or Slit sources,
COS cells were transfected with a chick Netrinl expression
plasmid (gift of Marc Tessier-Lavigne, Rockefeller) [11] or
a human Slit2 expression plasmid (gift of Yi Rao, Peking
(Beijing, China)) [68]. COS cells were cultured for 24
hours, then aggregates formed and placed near tissue
explants. Combined Netrinl and Slit2 signals were pro-
vided by mixing equal amounts of cells transfected with
each plasmid. Expression of the cues was verified using
anti-myc antibodies to label fixed COS cell cultures.
Explants were cultured for 48 hours, and then fixed.
Anti-DCC or BIlI-tubulin antibody was used to visualize
MLF axons. The length of axons was measured using the
Image] plugin Neuron] to determine mean axon lengths
from each explant, with the number of axons ranging
from 7 to 62. For directional analysis, quadrants were
marked on images using Adobe Illustrator (San Jose, CA),
then imported and quantitated in Image J.

Additional files

Additional file 1: Quantification of MLF distance from the midline.
Example showing the measurements made to compare the distance of
MLF axons from the midline. Differences in developmental stage were
normalized relative to the width (large bracket, wr1r2) of neural tissue at
the r1/r2 border.

Additional file 2: Netrin1 mutant longitudinal axons retain wild-type
axon numbers and DCC expression. (A-C) Whole mount embryos on E9.5
labeled with DCC antibody. The DCC labeling intensity was consistently
lower in Netrin1™* control embryos. (D) Quantification of numbers of
longitudinal axons on E9.5, by counting longitudinal axons on each side

of the hindbrain in images of whole mounts. The n numbers indicate the
number of embryos analyzed for each genotype; the error bars indicate
SEM. By ANOVA analysis, there were no significant differences in axon
number between the genotypes. Both ventral and dorsal axons were
included in these counts. The size of the most ventral bundle, consisting of
the MLF axons, was similar between genotypes, but tight fascicles made it
difficult to determine the number of individual axons. Scale bar: 100 um.

Additional file 3: Netrin1 mutants retain normal hindbrain floor
plate size and specification. Sections through E9.5 hindbrain labeled
with the 4C7antibody against HNF3b/FoxA2, a transcription factor
expressed in a domain including the floor plate and adjacent ventral
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cells. The morphology and size of the floor plate domain appears similar
in controls and Netrin1 mutants. Scale bar: 100 pm.

Additional file 4: Genotyping of Netrin1 mutant embryos.
Beta-galactosidase antibody labeling of spinal cord sections. Note the higher
intensity of antibody labeling in homozygous mutants. Scale bar: 100 um.

Abbreviations

ANOVA: analysis of variance; COS: CV-1 (simian) in Origin, and carrying the
SV40 genetic material; DCC: deleted in colorectal cancer; DV: dorsal-ventral;
E: embryonic day; FBS: fetal bovine serum; MLF: medial longitudinal
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