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Abstract

Background: How axon guidance signals regulate growth cone behavior and guidance decisions
in the complex in vivo environment of the central nervous system is not well understood. We have
taken advantage of the unique features of the zebrafish embryo to visualize dynamic growth cone
behaviors and analyze guidance mechanisms of axons emerging from a central brain nucleus in vivo.

Results: We investigated axons of the nucleus of the medial longitudinal fascicle (nucMLF), which
are the first axons to extend in the zebrafish midbrain. Using in vivo time-lapse imaging, we show
that both positive axon-axon interactions and guidance by surrounding tissue control initial nucMLF
axon guidance. We further show that two guidance molecules, transient axonal glycoprotein-|
(TAG-1) and laminin-a.l, are essential for the initial directional extension of nucMLF axons and
their subsequent convergence into a tight fascicle. Fixed tissue analysis shows that TAG-I
knockdown causes errors in nucMLF axon pathfinding similar to those seen in a laminin-o.] mutant.
However, in vivo time-lapse imaging reveals that while some defects in dynamic growth cone
behavior are similar, there are also defects unique to the loss of each gene. Loss of either TAG-1
or laminin-a.l causes nucMLF axons to extend into surrounding tissue in incorrect directions and
reduces axonal growth rate, resulting in stunted nucMLF axons that fail to extend beyond the
hindbrain. However, defects in axon-axon interactions were found only after TAG-I| knockdown,
while defects in initial nucMLF axon polarity and excessive branching of nucMLF axons occurred
only in laminin-a.| mutants.

Conclusion: These results demonstrate how two guidance cues, TAG-| and laminin-al, influence
the behavior of growth cones during axon pathfinding in vivo. Our data suggest that TAG-I
functions to allow growth cones to sense environmental cues and mediates positive axon-axon
interactions. Laminin-o.l does not regulate axon-axon interactions, but does influence neuronal
polarity and directional guidance.
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Background

In the developing nervous system, axon pathway forma-
tion is governed by signals that steer the axonal growth
cone in the appropriate direction. Although multiple
guidance signals have been identified, our understanding
of how specific growth cone behaviors and pathfinding
steps are regulated in vivo is far from complete. We are
investigating mechanisms controlling the pathfinding of
axons extending from the nucleus of the medial longitu-
dinal fascicle (nucMLF) in the zebrafish brain. The nuc-
MLF neurons are the first neurons to differentiate and
extend axons in the midbrain. They navigate uncharted
territory and establish a major axon tract upon which
multiple later-growing axons extend. We have focused
particularly on the initial pathfinding steps that nucMLF
axons must make: emergence from the cell body with cor-
rect polarity, extension in the correct direction, and con-
vergence into an axon tract or fascicle. These crucial first
steps are required by axons of many developing brain
nuclei, although little is known about how they are regu-
lated. We identify two guidance signals critical for initial
nucMLF axon guidance: laminin, a component of the
extracellular matrix (ECM) through which axons grow,
and transient axonal glycoprotein-1 (TAG-1), a cell adhe-
sion molecule (CAM) present on axons.

The first axons to extend in the brain use the ECM and
undifferentiated neuroepithelial cells as growth substrata
and guidance sources. Laminins are heterotrimeric glyco-
proteins, consisting of a, B, and y polypeptide chains, that
are secreted into the ECM and form a major component
of the ECM in the CNS [1]. In vitro studies have shown
that laminin provides a permissive substratum for neuro-
nal growth cones by binding and signaling through
integrin receptors [2-6]. Moreover, laminin can modulate
growth cone responsiveness to other extracellular guid-
ance cues, such as netrins and ephrins [7,8]. Interestingly,
contact with laminin stimulates axon formation in cul-
tured hippocampal neurons [9], and netrin controls axon
initiation in Caenorhabditis elegans [10], suggesting lam-
inin or its modulation of netrin could contribute to the
initial polarity of axon emergence. Mutations in particular
laminin subunits in C. elegans, Drosophila, and zebrafish
embryos [11-15], as well as antibody perturbation of lam-
inin in grasshopper [16], cause axon guidance defects,
indicating that laminins are important for axon guidance
in vivo. However, our understanding of laminin function
and its influence on growth cone behaviors in vivo is
incomplete.

CAMs of the immunoglobulin (Ig) superfamily play cru-
cial roles in mediating interaxonal relationships and com-
munication between axons and their surrounding cells
[17,18]. TAG-1 (or its chick homolog axonin-1) is a glyc-
osyl-phosphatidylinositol (GPI)-linked IgCAM present
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on the surface of growing axons that promotes neurite
outgrowth and interacts homophilically and heterophili-
cally with a host of other cell surface molecules [19-21]. In
vitro assays have shown that interactions with other
IgCAMs, including L1 and NrCAM (NrCAM = neuron-glia
related cell adhesion molecule), mediate axon outgrowth
and cell-cell adhesion [22-26]. Furthermore, interactions
of TAG-1 with L1 or NrCAM appear to be required in vivo
for midline crossing by spinal commissural axons and for
target selection by sensory neurons in the chick spinal
cord [27-29]. Axon guidance defects in TAG-1 knockout
mice have not been shown; however, neuronal migration
in the caudal medulla is defective in these animals [30].
We have found previously that TAG-1 knockdown in
zebrafish inhibits extension of sensory axons in the spinal
cord, although whether this is mediated by a homophilic
or heterophilic interaction is unknown [27-29,31].
Despite these studies demonstrating the importance of
TAG-1, we have yet to fully understand whether or how
TAG-1 controls directional axon guidance decisions or
how it influences dynamic growth cone behaviors in vivo.

Here we investigate how TAG-1 and laminin-a1 influence
growth cone behavior and axon outgrowth during the ini-
tial period of nucMLF axon development in vivo. Wild-
type growth cone behaviors suggest that axon-axon inter-
actions and possibly repulsion by surrounding tissue
direct the initial pattern of nucMLF axon growth. Interest-
ingly, TAG-1 knockdown causes defects in the directional
extension and initial convergence of MLF axons that, in
fixed tissue, appear identical to pathfinding errors previ-
ously observed in a laminin-al mutant, bashful [15].
However, in vivo time-lapse imaging of growth cone
behaviors reveals that although there are some similar
effects of TAG-1 or laminin-al loss of function, there are
also distinct and significant differences. Our results sug-
gest that TAG-1 functions to guide the direction of axon
extension by interpreting environmental cues and also
mediates positive axon-axon contacts. Laminin-al does
not appear to affect axon-axon interactions, but does reg-
ulate neuronal polarity and influence growth cone
responsiveness to surrounding cues.

Results

Characterization of normal MLF axon convergence

To investigate the guidance cues and growth cone behav-
iors involved in the initial outgrowth of axons from an
early developing brain nucleus, we studied the formation
of the zebrafish MLF, one of the first axon tracts to develop
in the zebrafish central nervous system (CNS; Figure 1a)
[32]. The MLF arises from bilateral clusters of neuronal
cell bodies, called the nucMLF, that lie in the ventral mid-
brain. At the onset of MLF formation (16 hours post ferti-
lization (hpf)), the nucMLF consists of 6-8 neurons and
by 24 hpf the cluster has grown to approximately 30-35
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Initial extension and convergence of MLF axons.(a-e)
Ventral views, anterior to the left. (a) Schematic representa-
tion of MLF axons and hindbrain axons that grow along the
MLF. The dashed line denotes the ventral midline and the
dashed box surrounds the 'nucMLF zone'. r = rhombomere.
(b) Confocal projection of 20 hpf Tg(pitx2c:gfp) embryo
stained with anti-GFP (green) and ZN-12 antibodies (red). (c-
e) Whole mount preparations of Tg(pitx2c:gfp) embryos
stained with anti-GFP at 16 (c), 20 (d), and 24 (e) hpf. Midline
is up. Asterisks denote the caudal-most nucMLF cell and
arrows indicate the 'convergence point'. Scale bar = 25 um.

neurons [33,34]. During the initial wave of axonogenesis
(16-30 hpf), unipolar nucMLF cells each extend an axon
caudally along the ipsilateral ventral neural tube. The cau-
dal-most nucMLF cell extends the leading MLF axon into
the hindbrain and then the more rostrally positioned cells
extend axons that fasciculate with the leading axon [35].
We have previously reported that Semaphorin3D, which
is expressed both rostral and medial to the nucMLFs, plays
a role in repelling nucMLF axons in the caudal direction
[36,37]; however, nothing is known about other extracel-
lular cues involved in guiding the initial pathfinding deci-
sions of nucMLF axons. Here, we further investigate
guidance mechanisms that control how nucMLF axons
initially extend in the correct direction and fasciculate
with the leading nucMLF axon.
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We first characterized the pattern of nucMLF axon out-
growth by examining fixed embryos at stages between 16
and 24 hpf. To specifically visualize nucMLF neurons, we
used a transgenic line in which a pitx2 promoter construct
drives green fluorescent protein (GFP) expression
(Tg(pitx2c:gfp)) in nucMLF neurons (Figure 1b-e; see
Materials and methods). We verified that all nucMLF neu-
rons are labeled by double labeling embryos with anti-
bodies against ZN-12, a marker of nucMLF neurons, and
GFP (Figure 1b). At the onset of nucMLF axonogenesis,
cell bodies each extended one axon in the direction of the
caudal-most nucMLF cell body (Figure 1lc-e, asterisk),
which extended its own axon into the hindbrain, parallel
to the ventral midline. In their initial trajectory, the earli-
est nucMLF axons typically did not contact neighboring
axons since their cell bodies were positioned at some dis-
tance from one another, but later as these axons
approached the caudal-most nucMLF cell and as the
number of nucMLF cells increased, axon-axon contact was
prevalent. Interestingly, the axons did not appear to
extend into the tissue surrounding the nucMLF. Rather,
they appeared to extend directly toward the caudal-most
nucMLF cell body and eventually converged on a point
just rostral to this cell (Figure 1c—e, arrow). In our subse-
quent analysis, we will refer to this point as the conver-
gence point. Beyond the convergence point, MLF axons
extend into the hindbrain as a tight fascicle.

Axon-axon interactions and the surrounding tissue
contribute to the convergence of nucMLF axons

To better understand nucMLF growth cone behaviors and
gain insight into potential guidance factors that might
control initial axon direction, convergence, and fascicula-
tion, we performed in vivo time-lapse imaging of these
neurons. We reasoned that specific growth cone behaviors
(that is, retraction, pausing, branching, and so on) would
reflect underlying molecular mechanisms responsible for
these behaviors. To visualize growing nucMLF axons in
vivo, we removed the yolk cell from Tg(pitx2c:gfp) embryos
and imaged the nucMLF from the ventral side of the
embryo proper (see Materials and methods for details),
beginning at approximately 16 hpf. Consistent with the
fixed staging series, each nucMLF neuron extended one
axon from its caudal side, which grew towards the conver-
gence point. Once growth cones contacted neighboring
MLF axons, they maintained these contacts and extended
along the axon en route to the convergence point. This
behavior was highly conserved and these interactions
appeared to expedite growth towards the convergence
point, suggesting that axon-axon contacts may be impor-
tant for MLF formation (n = 11 embryos, 32 growth cones;
Figure 2a and Additional file 1). In some cases, axons
extended from cell bodies that were positioned up to 25
pm from their nearest neighbor, and, therefore, the major-
ity of their path towards the convergence point was not
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Figure 2

MLF growth cones fasciculate along neighboring MLF
axons and are inhibited by surrounding tissue.(a, b)
Images from time-lapse sequence of MLF axon outgrowth in
uninjected Tg(pitx2c:gfp) embryos. Ventral views, anterior to
the left, midline is up. Asterisks denote the caudal-most nuc-
MLF cell. (a) The arrows indicate the position of the growth
cone that fasciculates along a neighboring MLF axon. (b) The
arrowheads label the growth cone that is repelled by sur-
rounding tissue. The time stamp shows hours: minutes. Scale
bar =25 pm.

along a neighboring axon. This observation suggested that
axon-axon interactions were not the only factor required
for proper convergence. Indeed, we found that if a wild-
type growth cone extended aberrantly into the surround-
ing tissue, away from the convergence point, it was able to
retract and redirect its growth in the appropriate direction
without contact with other axons (Figure 2b and Addi-
tional file 2). This result suggests that nucMLF axons are
guided by surrounding tissues, perhaps by repulsive cues
that funnel them towards the convergence point.

TAG-1 and laminin-c| are required for the initial
convergence of nucMLF axons

Given the significant axon-axon interactions we observed
in the live imaging experiments, we asked whether TAG-1,
a GPI-linked Ig superfamily CAM known to mediate axon-
axon interactions [19], was critical for the initial growth
and convergence of MLF axons. tag-1 mRNA is expressed
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by a subset of neurons in the zebrafish brain, including
the nucMLF (Figure 3a) [38]. We examined the expression
of TAG-1 protein during initial stages of MLF develop-
ment (16-24 hpf), and found that it is expressed on the
nucMLF axons and weakly on the nucMLF cell bodies
throughout these stages (Figure 3b-d, and data not
shown). In addition, TAG-1 is expressed on axons from
the nucleus of the tract of the postoptic commissure
(nucTPOC) that begin to extend past the lateral side of the
nucMLF around 19-20 hpf, and on a couple of cells lat-
eral to the nucMLF, but not otherwise in the surrounding
neuroepithelium. We injected Tg(pitx2c:gfp) embryos at
the 1-4 cell stage with a translation blocking TAG-1 mor-
pholino antisense oligonucleotide (TAGIMO) [31],
allowed them to develop to 24 hpf, and examined the pat-
tern of nucMLF axon outgrowth in fixed embryos by
immunolabeling with an anti-GFP antibody. We have pre-
viously shown that injection of TAGIMO, but not a stand-
ard control morpholino (STDCONMO), eliminates TAG-
1 immunolabeling, indicating the loss of TAG-1 protein
[31]. TAG-1 knockdown caused several defects in nucMLF
axon initial growth and convergence, but did not appear
to alter the number of nucMLF neurons (Figure 3i-k, m).
Normally, nucMLF axons initially extend only within the
area containing the nucMLF cell bodies (called the 'nuc-
MLF zone'; outlined in Figure 3i-1) prior to reaching the
convergence point. However, after TAG-1 knockdown,
nucMLF axons aberrantly extended into the tissue medial,
lateral, and rostral to the nucMLF zone (Figure 3k, open
arrowhead). This phenotype was observed in 67.6% (n =
173) of TAG1MO injected embryos, compared with only
8.4% (n = 107) of STDCONMO injected embryos (Figure
3i-k, m). In addition, the axons converged at a point
more caudal than the typical convergence point in 73.2%
(n=168) of embryos injected with TAGIMO, while injec-
tion of STDCONMO caused this defect in only 8.4% (n =
107) of embryos (Figure 3i-k, arrowheads, and Figure
3m).

Knockdown of TAG-1 also significantly stunted nucMLF
axon outgrowth. Normally, the leading edge of the MLF
has reached the anterior spinal cord by 24 hpf [34]; how-
ever after TAG-1 knockdown, MLF axons had not
extended beyond the anterior hindbrain in 62.2% (n =
172) of embryos, compared with only 2.8% (n = 107) of
STDCONMO injected embryos (Figure 3j, m). To deter-
mine whether these defects were specifically due to TAG-
1 knockdown and not to nonspecific morpholino effects,
we attempted to rescue the defects by co-injecting
TAGIMO with a TAG-1 mRNA construct that did not
include the majority of the TAGIMO binding region.
TAG-1 overexpression did not cause any non-specific
gross morphological changes, but did significantly reduce
the percentage of embryos with nucMLF defects, suggest-
ing that these defects are specific to TAG-1 knockdown
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Figure 3

TAG-1 or laminin-al loss of function disrupts normal MLF axon convergence.(a-l) Ventral views, anterior to the
left. (a) In situ hybridization for tag-1 in 20 hpf embryo. Arrows indicate expression in nucMLF. (b-d) Confocal projections of 19
hpf Tg(pitx2c:gfp) embryos labeled with anti-GFP (green) and anti-TAG-| (red) antibodies. The arrow indicates unidentified
cells in the diencephalon expressing the pitx2c:gfp transgene. The brackets indicate the extent of nucMLF. (e-h) Single confocal
plane of nucMLF region in 23 hpf Tg(pitx2c:gfp) embryos labeled with anti-GFP (green) and anti-laminin (red). (e-g) The focal
plane is at the ventral surface of the neuroepithelium. The inset in (g) is 2 90 degree rotation of a z-reconstruction, with ventral
down, showing the laminin underlying the nucMLF. (h) The focal plane is 4 um dorsal to the plane in (e-g), and shows that lam-
inin is not concentrated within the neuroepithelium. (i-) Whole mount preparations of STDCONMO injected embryos (i),
TAGIMO injected embryos (j, k), and bal;Tg(pitx2c:gfp) embryos (1) labeled with an anti-GFP antibody. The outline defines the
'nucMLF zone'. Arrows indicate the normal convergence point. Filled arrowheads denote the actual convergence point. Open
arrowheads label examples of MLF axons outside of the nucMLF zone. The asterisk indicates stunted MLF extension. (m)
Quantification of the average percentage of embryos with MLF phenotypes. *P < 0.001, two sample binomial comparison ver-
sus STDCON. #P < 0.001, two sample binomial comparison versus TAGIMO. N equals the number of embryos. Scale bars =
50 um. The scale bar in (b) is for (b-h).
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(Figure 3m). Furthermore, knockdown of L1, another Ig
superfamily CAM that is expressed by the nucMLF [39],
did not cause the above defects, although it did cause MLF
defasciculation in the hindbrain [35], suggesting that not
all CAMs expressed by these neurons are required for MLF
axon convergence. Together, these data suggest that TAG-
1 is required for the efficient convergence of nucMLF
axons and that it potentially functions to promote posi-
tive axon-axon interactions and/or allow nucMLF axons
to interpret signals from the surrounding tissue.

Interestingly, the nucMLF axon defects induced by TAG-1
knockdown appeared very similar to defects we previously
observed in bashful (bal) embryos, which have a mutation
in the laminin-a1 subunit (Figure 31) [15,40]. Laminin is
expressed broadly in the basal lamina along the ventral
surface of the neuroepithelium, directly apposed to the
nucMLF and the MLF axons during all stages examined
(16-24 hpf; Figure 3e-h, and data not shown). In bal
mutants, the nucMLF axons also appear to extend aber-
rantly outside the nucMLF zone before eventually con-
verging in the anterior hindbrain. Moreover, these axons
appear defasciculated and stalled in the hindbrain. The
similar defects suggest that TAG-1 and laminin-al may
function together to guide the initial convergence of nuc-
MLF axons or that they may have similar influences on
growth cone behavior to produce comparable pathfinding
defects. However, the fixed tissue analysis of nucMLF axon
defects was insufficient to address these questions.

NucMLF growth cones exhibit behavioral defects after
TAG-I or laminin-al loss of function

To determine how TAG-1 and laminin-a1 loss of function
influences nucMLF growth cone behaviors, we performed
in wvivo time-lapse imaging in TAGIMO injected
Tg(pitx2c:gfp) embryos and bal; Tg(pitx2c:gfp) embryos.
Interestingly, live imaging results indicate these cues play
both overlapping and unique roles in regulating nucMLF
growth cone behaviors to cause the apparently identical
defects observed in fixed tissue. In TAGIMO injected or
bal embryos, axons extended in aberrant directions and
into the tissue surrounding the nucMLF zone, without
retracting or immediately correcting their growth direc-
tion (Figure 4a, b and Additional files 3, 4). Some of these
misdirected axons eventually converged with other nuc-
MLF axons that had extended properly (Figure 4a, arrow-
head), while others approached or crossed the ventral
midline (Figure 4a, b, arrows) or grew laterally after exit-
ing the nucMLF zone. Interestingly, axons extended into
medial (30%, n = 49 axons in 10 embryos) and lateral
(23%, n = 49 axons in 10 embryos) tissues with compara-
ble frequency after TAG-1 knockdown. However, in bal
embryos, the majority of axons extending into surround-
ing tissue grew towards the ventral midline (53%, n = 80
axons in 8 embryos; 16% extended laterally), and in some
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cases, these axons accelerated as they neared the midline.
To quantify the directional outgrowth errors, we deter-
mined the average percentage of time that axons extended
in the correct direction (‘on-track') and whether each MLF
axon initially emerged from its cell body in an 'on-track’
or 'off-track' position. We defined 'on-track' as growth
within a region defined by a line extending from the cell
body at 90 degrees to the nucMLF centerline and another
line connecting the cell body to the convergence point
(Figure 4c). The nucMLF centerline was defined as an
imaginary line drawn along the MLF and extending ros-
trally through the nucMLF (Figure 4a, ¢, dashed line).
Growth outside of this region or across the nucMLF cen-
terline was considered 'off-track’. On average, axons spent
significantly more time growing off-track after TAG-1 or
laminin-a1 loss of function (Figure 4d). Axons from unin-
jected embryos extended off-track only 3% of the time (n
=40 axons in 11 embryos). However, axons in TAGIMO
injected and bal embryos grew off-track 35% (n = 44
axons in 10 embryos) and 75% (n = 31 axons in 8
embryos) of the time, respectively. In bal embryos, a sig-
nificant number of axons (40%, n = 83 axons in 8
embryos; Figure 4e) initially emerged from their cell bod-
ies in an incorrect direction, which may, at least in part,
explain why these axons grew off-track the majority of the
time measured. In contrast, the majority of axons in
TAG1MO injected embryos emerged from their cell bod-
ies in an on-track position and later extended off-track.
Taken together, these data suggested that TAG-1 and lam-
inin-a1 may both be required for nucMLF growth cones
to be guided by the surrounding tissue and that laminin-
al is important for establishing the initial polarity of nuc-
MLF neurons.

TAG-I, but not laminin-al, affects nucMLF axon-axon
interactions

The live imaging experiments also revealed a role for TAG-
1, but not laminin-a1, in regulating axon-axon interac-
tions among converging nucMLF axons. In TAGIMO
injected embryos, we commonly observed growth cones
contacting neighboring axons and then subsequently
retracting (Figure 5a and Additional file 5). In many cases,
growth cones would sample multiple other axons, but fail
to maintain any of the interactions. None of these behav-
iors were observed in bal embryos where aberrantly
guided axons maintained their interactions once they con-
tacted other axons (Figures 4b and 5b, and Additional
files 4 and 6). To quantify the maintenance of axon-axon
interactions, we calculated the average percentage of time
in which growth cones were in contact with neighboring
axons once contact was initiated, the average duration of
each contact, and the average number of axons contacted
per growth cone. On average, axons in TAG1MO injected
embryos were in contact with neighboring axons only
47% (n = 22 axons in 10 embryos) of the time compared
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TAG-I or laminin-al loss of function causes misdirected MLF axon outgrowth.(a, b) Images from timelapse
sequence of MLF axon outgrowth in TAGIMO injected (a) and bal;Tg(pitx2c:gfp) (b) embryos. Ventral views, anterior to the
left, midline is up. Asterisks denote the caudal-most nucMLF cell. The dashed red line marks the nucMLF centerline. Arrows
indicate MLF axons that wander into surrounding tissue and do not converge within timelapse duration. Arrowheads label an
MLF axon that extends into lateral tissue, but eventually converges. The time stamp shows hours: minutes. (c) Schematic rep-
resentation defining on-track (red shaded region) versus off-track regions. (d, €) Quantification of the average percentage of
time MLF axons grew off-track (d) and the average percentage of axons that initially emerged from their cell body in an off-
track position (e). *P < 0.001, two sample binomial comparison versus uninjected. N equals the number of MLF axons. Scale

bar =25 pm.

with 95% (n = 32 axons in 11 embryos) and 96% (n =11
axons in 8 embryos) of the time in uninjected and bal
embryos, respectively (compare Figures 5c and 2a). More-
over, the average duration of these contacts was 70 min-
utes (n = 35 axon contacts in 10 embryos) in TAGIMO
injected embryos versus 176 minutes (n = 34 axon con-
tacts in 11 embryos) and 177 minutes (n = 12 axon con-
tacts in 8 embryos) in uninjected and bal embryos,
respectively (Figure 5d). Finally, prior to converging, each
growth cone contacted an average of 1.06 axons (n = 32
growth cones in 11 embryos) in uninjected and 1.09
axons (n = 11 growth cones in 8 embryos) in bal embryos
(Figure 5e). However, after TAG-1 knockdown, each
growth cone sampled 1.6 axons (n = 22 growth cones in
10 embryos; Figure 5e), suggesting that growth cones
repeatedly sample neighboring axons despite their inabil-
ity to maintain these interactions. The failed axon interac-
tions in TAGIMO injected embryos may contribute to

their increased off-track extension since these axons often
changed their trajectory and extended away from the nuc-
MLF centerline after breaking contact with a neighboring
axon. Moreover, these axon-axon defects may have poten-
tial additional consequences in terms of neuronal polar-
ity. In one case, we observed the growth cone of a newly
emerged MLF axon contact a neighboring axon and then
collapse (Figure 5a, arrow). After collapsing, the axon
retracted to its cell body and then what appeared to be a
new axon emerged from the opposite side of the cell body,
consequently changing the neuron's polarity. We never
observed such polarity changes in uninjected embryos,
nor did we ever observe a nucMLF neuron extend multiple
axons and then prune all but one axon in any of the
groups. Collectively, these observations suggested that
TAG-1 knockdown reduced positive axon-axon interac-
tions, which can cause nucMLF axons to grow off-track
and possibly influence nucMLF neuronal polarity.
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Figure 5

TAG-I knockdown causes defects in MLF axon-axon interactions.(a, b) Images from time-lapse sequence of MLF
axon outgrowth in TAGIMO injected (a) and bal;Tg(pitx2c:gfp) (b) embryos. Ventral views, anterior to the left, midline is up.
Asterisks denote the caudal-most nucMLF cell. Arrowheads label a growth cone that repeatedly samples neighboring axons,
but fails to maintain these interactions. Arrows label a growth cone that contacts another MLF axon, subsequently retracts,
and then emerges from the opposite side of the neuron. The time stamp shows hours: minutes. (c-e) Quantification of the
average percentage of time each growth cone contacted another MLF axon after contact was initiated (c), the average duration
of these contacts (d), and the average number of axons each growth cone contacted (e). *P < 0.001, two sample binomial com-
parison versus uninjected. #P < 0.001, two-tailed t-test versus uninjected. Error bars represent the standard error of the mean.

N equals the number of axons (c, e) and growth cone-axon contacts (d). Scale bar = 25 um.

nucMLF axon branching increases in bal, but not after
TAG-1 knockdown

Typically, nucMLF axons do not branch as they initially
converge in the midbrain and extend through the hind-
brain. Only much later in development do they normally
develop collateral branches that innervate the spinal cord
[41]. However, in bal, we commonly observed axons that
extended collateral branches or growth cones that split
and produced divergent axons (Figure 6a and Additional
file 7). nucMLF axons did not branch significantly in
uninjected or TAG1IMO injected embryos. Branches were
counted if they lasted for at least ten minutes and many of
the branches lasted for the duration of the imaging session
(up to six hours). On average, axons in bal embryos each
extended 0.71 branches (n = 49 axons in 8 embryos),
compared to 0 branches in uninjected embryos (n = 51
axons in 11 embryos) and 0.17 branches in TAGIMO
injected embryos (n = 42 axons in 10 embryos) (Figure
6b). In bal embryos, approximately 54% (n = 49 axons in
8 embryos) of axons extended at least one branch, and
19% had more than one branch. The majority of these
branches extended from the axon shaft. These observa-
tions suggest that the presence of laminin-al normally

suppresses axon branching, and that TAG-1 does not
influence axon branching during nucMLF axon conver-
gence.

nucMLF axons have reduced growth rates in TAG-1
knockdown and bal embryos

The stunted MLF outgrowth phenotype we observed in
the fixed tissue analysis of TAGIMO injected and bal
embryos (Figure 3i, j, m) [15] may be due, in part, to their
initial extension in incorrect directions, but a reduced
growth rate may also contribute to this phenotype. There-
fore, we quantified the growth rate of axons in uninjected,
TAGIMO injected, and bal embryos from their initial
extension until they reached the convergence point or an
equivalent position in the rostral-caudal axis (Figure 6¢).
Axons in uninjected embryos grew at an average of 14.11
+ 1.08 um/h (Figure 6¢). However, axons in TAGIMO
injected or bal embryos grew significantly slower at an
average of 10.63 + 1.13 um/h and 8.27 + 0.96 um/h,
respectively (Figure 6¢). Thus, in addition to their ineffi-
cient pathfinding towards the convergence point, reduced
growth rates likely contribute to the retarded MLF axons
observed after TAG-1 or laminin-a1 loss of function.
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bal embryos have excessively branched axons and MLF growth rates are reduced by TAG-1 or laminin-al loss
of function.(a) Images from timelapse sequence of MLF axon outgrowth in a bal;Tg(pitx2c:gfp) embryo. Ventral views, anterior
to the left, midline is up. The asterisk denotes the caudal-most nucMLF cell. Open and filled arrows and arrowheads label
branches from individual axons. The time stamp shows hours: minutes. (b, c) Quantification of the average number of
branches per axon (b) and the average growth rate of MLF axons (c). #P < 0.001, Kruskal-Wallis ANOVA versus uninjected. *P
< 0.05, **P < 0.001, two-tailed t-test versus uninjected. Error bars represent the standard error of the mean. N equals the

number of axons. Scale bar = 25 um.

Discussion

In this study, we use in vivo time-lapse imaging to show
how TAG-1 and laminin-a1 affect dynamic growth cone
behaviors, initial axon direction, and interactions among
nucMLF axons in the zebrafish brain. Normally, nucMLF
axons converge and fasciculate soon after extending from
their cell bodies. Our results suggest this growth pattern is
driven by a combination of guidance by surrounding tis-
sue and axon-axon fasciculation. TAG-1 or laminin-al
loss of function disrupted this stereotypical outgrowth
pattern. First, TAG-1 or laminin-al loss of function
caused MLF axons to aberrantly extend into the surround-
ing tissue. TAG-1 knockdown also caused MLF growth
cones to retract from neighboring MLF axons, which led
to aberrant directional extension of MLF axons and possi-
bly influenced changes in neuronal polarity. Axon-axon
interactions appeared normal in bal embryos; however,
neuronal polarity was affected, since MLF axons often
emerged from their cell bodies in the incorrect direction.
MLF axons were also excessively branched in bal embryos.
Finally, MLF axons in TAG1IMO injected or bal embryos
exhibited reduced growth rates and were stalled in the

hindbrain. Taken together, these results reveal critical
roles for TAG-1 and laminin-al in controlling specific
growth cone behaviors, neuronal polarity, and directional
outgrowth to guide proper formation of a major CNS
pathway.

Interestingly, TAG-1 may serve dual functions in mediat-
ing nucMLF axon pathfinding as it appears to be required
for sensing a signal in the surrounding tissue and for
mediating axon-axon interactions. Several Ig superfamily
CAMs, including TAG-1, have been shown to mediate
axon fasciculation via homophilic and heterophilic bind-
ing partners [17-19]. Therefore, the defective nucMLF
axon-axon interactions caused by TAG-1 knockdown were
not surprising. It is highly possible that TAG-1 promotes
adhesion among nucMLF axons either homophilically or
heterophilically, although a heterophilic partner has not
been determined in this case. The apparent consequences
of these failed interactions were more intriguing. Often,
growth cone retraction upon contacting a neighboring
axon was followed by a change in direction and extension
into the surrounding tissue, suggesting that these defective
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interactions may have contributed to further pathfinding
errors. Furthermore, in a few cases, defective axon-axon
interactions led to the complete retraction of the original
axon and the emergence of a new axon on the opposite
side of the neuron, thus altering the polarity and direc-
tional extension of nucMLF axons. Collectively, these
results exemplify the significance of TAG-1 mediated
axon-axon interactions not only to fasciculation, but also
to directional guidance and neuronal polarity. Finally, it is
possible that TAG-1 mediates interactions between nuc-
MLF and nucTPOC axons, which also extend through the
midbrain and join the MLF. However, nucTPOC axons
grow into this region 2-3 hours after the initial outgrowth
of nucMLF axons and appeared unaffected by TAG-1
knockdown.

In addition to this expected role for TAG-1, our results
also suggest TAG-1 is required for nucMLF axons to sense
a guidance signal from the environment because TAG-1
knockdown also caused nucMLF axons to grow in aber-
rant directions without first contacting other axons. This
signal potentially could be an inhibitory cue located in tis-
sue surrounding the nucMLF and/or an attractive cue
emanating from the convergence point. This finding is
interesting because TAG-1 is not known to function as a
receptor for repulsive or attractive ligands. However,
related Ig superfamily CAMs, such as L1 and NrCAM, have
recently been shown to be required receptor components
for repulsive semaphorin signaling [42-45]. Thus, these
observations raise the intriguing possibility that TAG-1
may also serve as a receptor component for repulsive and/
or attractive ligands in vivo.

Laminin also appears to be involved in preventing MLF
axon growth into inappropriate surrounding tissues and
orienting outgrowth direction. Laminin is expressed
throughout the basal lamina upon which MLF axons
extend, and thus it could function directly to guide nuc-
MLF axons by signaling via integrins or other receptor
molecules on nucMLF growth cones. Alternatively, lam-
inin-a1 may affect axons indirectly through more global
effects on brain organization or by binding and present-
ing other guidance signals. An interesting possibility is
that laminin-a1 may regulate growth cone responsiveness
to other cues expressed by the surrounding tissue, such as
netrin or ephrin, which have been shown to elicit repul-
sion in the presence of laminin [7,8]. Without functional
laminin-al, nucMLF axons may be attracted or non-
responsive to such cues. Interestingly, in bal, misguided
axons appeared biased to extend towards the ventral mid-
line rather than wandering in all directions equally. This
observation suggests that laminin-a.1 indirectly regulates
axon repulsion by another cue in the midline region
because laminin-al is expressed broadly, not only at the
midline [46].

http://www.neuraldevelopment.com/content/3/1/6

Loss of laminin-al also caused defects in polarity and
branching. Establishing appropriate neuronal polarity is
arguably the first step towards properly guiding an axon
because it determines the initial direction of axon out-
growth. Normally, almost all nucMLF neurons immedi-
ately extended their axon in the direction of the
convergence point. However, in bal, we observed a signif-
icant number of neurons that initially extended axons in
aberrant directions, suggesting that laminin-a.1 is critical
for establishing the proper polarity of these neurons.
Again, whether nucMLF neuronal polarity is directly or
indirectly regulated by laminin-al remains to be deter-
mined. Recently, netrin was shown to regulate neuronal
asymmetry and define the site of axon formation [10]. It
is possible that these roles may also require the presence
of laminin, similar to netrin-mediated repulsion. Func-
tionally, the nucMLF polarity defect may also have con-
tributed to the increased percentage of time that axons
extended off-track. In addition to polarity defects, axons
were excessively branched in bal. It might be surprising
that loss of laminin-a.1, which usually functions as a per-
missive growth substratum, would directly stimulate
increased branching. However, it is possible that the loss
of laminin-al created an inhibitory substratum causing
growth cone stalling or retraction, which has been corre-
lated with back branching [47,48]. These observations
reveal novel roles for laminin-a1 in establishing neuronal
polarity and regulating axon branching.

TAG-1 or laminin-a1 loss of function ultimately caused
nucMLF axons to prematurely stall in the hindbrain. Inter-
estingly, the stalled axons were almost always observed in
the anterior hindbrain, instead of being positioned along
a continuum from the anterior hindbrain to the anterior
spinal cord, where they should have reached by 24 hpf.
This observation suggests that an additional cue may be
required to promote axon extension through this region
and that late arriving axons may miss the temporal expres-
sion window of this factor. Alternatively, nucMLF axons
may become non-responsive to the potential factor in the
absence of TAG-1 and/or laminin-al function. In any
case, it is interesting that the position of stalled nucMLF
axons is the same in embryos deficient for TAG-1 or lam-
inin-a1.

Conclusion

Collectively, our live imaging data reveal that TAG-1 and
laminin-a1 loss of function cause some similar defects in
nucMLF growth cone behavior, while also causing defects
unique to the loss of each gene. The fact that both contrib-
uted to restricting nucMLF axon outgrowth to within the
nucMLF zone might suggest that TAG-1 and laminin-al
may function cooperatively to mediate inhibition of
growth cones by surrounding tissue. One possibility is
that TAG-1 and laminin-a1 act in separate signaling path-
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ways, with common and distinct downstream effectors.
Alternatively, laminin-al in the environment may
directly bind TAG-1 on nucMLF growth cones, although
no such interaction has been demonstrated. Instead, lam-
inin-a.1 may indirectly regulate the presentation of a bind-
ing partner of TAG-1. Future experiments will be required
to address these alternative mechanisms.

Materials and Methods

Animals

Zebrafish (Danio rerio) were maintained in a laboratory
breeding colony on a 14/10 h light/dark cycle. Embryos
were maintained at 28.5°C and staged as described previ-
ously [49]. bashful mutant embryos were obtained from
fish carrying the balvw-1allele [15], which contains a muta-
tion that results in a predicted protein truncation at amino
acid 1,424 of laminin-a1 [50]. Animals were handled in
accordance with guidelines set forth by NIH and IACUC,
and the animal use protocol was approved by the Univer-
sity of Wisconsin Animal Care and Use Committee (assur-
ance number A3368-01).

Generation of Tg(pitx2c:gfp) transgenics

The Tg(pitx2c:gfp) transgenic line was generated using an
internal promoter of the pitx2 gene that specifically pro-
duces the pitx2c isoform [51]. This promoter was obtained
by amplifying a region from exon 2 to exon 4 of the pitx2
gene from a PAC clone. This fragment was fused to the
enhanced GFP (EGFP) coding sequence followed by the
SV40p(A) signal sequence from pEGFP-N1 (Clontech,
Mountain View, CA, USA) and cloned into pBSIIKS-
(Stratagene, La Jolla, CA, USA). The primers used for PCR
amplification of the pitx2c promoter were: 5'-AGGGTAC-
CGGACTCCCACTGCCGCAAACT-3' and  5'-TCTA-
GAGCTCTGTAATGCAAAAGGAAACAC-3'. The primers
used to amplify the EGFP-SV40p(A) fragment were: 5'-
TAACGAGCTCATGGTGAGCAAGGGCGAGGA and 5'-
CAGAATTCTGAGTTTGGACAAACCACAAC-3'. To gener-
ate transgenic zebrafish, the vector sequence was removed
from the pitx2c:egfp construct prior to injection into
embryos at the one-cell stage. Three independent lines
were isolated that all showed expression of EGFP in the
trigeminal ganglia and the nucMLF.

Immunohistochemistry

For whole-mount immunohistochemistry, embryos were
fixed in 4% paraformaldehyde overnight, blocked in 5%
sheep serum and 2 mg/ml bovine serum albumin in phos-
phate buffered saline with 0.1% Tween, and incubated
overnight (4°C) in anti-GFP (1:1,000; Sigma, St Louis,
MO, USA), ZN-12 (1:250; Zebrafish International
Zebrafish Center, Eugene, OR, USA) or anti-TAG1 (1:500;
[52]). Antibody labeling was performed with the
Vectastain IgG ABC immunoperoxidase labeling kit (Vec-
tor Laboratories, Burlingame, CA, USA). For fluorescent

http://www.neuraldevelopment.com/content/3/1/6

double labeling, Alexa-conjugated secondary antibodies
(4 pg/ml; Invitrogen-Molecular Probes, Carlsbad, CA,
USA) were used to bind primary antibodies.

Morpholino antisense

Morpholino oligonucleotides were synthesized by Gene
Tools (Corvallis, OR, USA). To knockdown TAG-1, we
used a morpholino sequence (TAGIMO; 5'-CCACAC-
CCA-GACCAGACACTTATTT-3") that has been previously
reported and shown to block TAG-1 protein [31]. As a
control, we injected a standard control morpholino (STD-
CONMO; 5'-CCTCTTACCTCAGTTACAATTTATA-3').
Morpholino oligos were injected into newly fertilized
embryos at the one- to four-cell stage as described previ-
ously [53]. Optimal concentrations for the TAG1MO were
determined by titrating the dose from 1-10 ng per
embryo; 10 ng injections appeared to cause non-specific
toxicity, 2.5-5 ng injections appeared to cause robust
defects without non-specific cell death, and 1 ng injec-
tions caused partial, but insignificant, defects. Therefore,
we injected TAGIMO at approximately 2.5-5 ng to elicit
full knockdown and equivalent doses of STDCONMO
were injected for each experiment.

TAG-1 mRNA rescue construct overexpression

To create a TAG-1 construct potentially capable of rescu-
ing TAG-1 knockdown, we subcloned full-length TAG-1
into the pCS2+ vector and then removed the first 20 bases
of the sequence complementary to the 25-mer TAGIMO
sequence, located in the 5' untranslated region. The
mMessage mMachine Kit (Ambion, Austin, TX, USA) was
used to transcribe 5' capped mRNA from pCS2+TAGI.
Approximately 100 pg of RNA was injected into one-cell
stage embryos. Overexpression was verified by immu-
nolabeling for TAG-1 at 24 hpf.

Imaging

All brightfield images were captured on a Nikon TE300
inverted microscope equipped with a Spot RT camera
(Diagnostic Instruments, Sterling Heights, MI, USA) and
processed with Metamorph software (Universal Imaging
Corp., West Chester, PA, USA). Fluorescent images of
fixed preparations are confocal images captured on an
Olympus Fluoview 1000 Laser Scanning Confocal Micro-
scope.

In vivo time-lapse imaging

Preparation of embryos for imaging was adapted from
Langenberg and colleagues [54]. Briefly, the yolk cell was
paralyzed by adenosine 5' (B,y-imido)triphosphate (Cal-
biochem, San Diego, CA, USA) injection at 15.5 hpf, and
then removed. Each embryo was mounted between two
coverslips separated by high vacuum silicon grease in 67%
L-15. Embryos ranged in age from 16-18 hpf at the start
of imaging and were imaged for 2-12 hours in a temper-
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ature controlled environment set to 29°C. Images were
captured using a 60x dipping objective (NA = 1.00) on a
Nikon (Tokyo, Japan) E-600FN equipped with standard
epifluorescence, a filter wheel, and a CoolSnap HQ cam-
era (PhotoMetrics, Tucson, AZ, USA). Images were cap-
tured every one minute, and exposure times were typically
300-600 ms. Images and movies were captured, proc-
essed, and analyzed with MetaMorph software (Molecular
Devices, Sunnyvale, CA, USA.
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Additional material

Additional file 1

Time-lapse sequence of normal MLF axon outgrowth in an uninjected
Tg(pitx2c:gfp) embryo. Ventral view, anterior to the left, ventral midline
is up. The excerpt begins at 17 hpf. The movie shows MLF axons converg-
ing and MLF growth cones fasciculating along neighboring MLF axons.
Images were captured every minute, and the movie runs at ten frames per
second.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-3-6-S1.mov]

Additional file 2

Time-lapse sequence of normal MLF axon outgrowth in an uninjected
Tg(pitx2c:gfp) embryo. Ventral view, anterior to the left, ventral midline
is up. The excerpt begins at 17 hpf. The movie shows a MLF growth cone
(top left) extend into tissue outside the nucMLF zone, collapse, retract,
and then fasciculate along an adjacent MLF axon. Images were captured
every minute, and the movie runs at ten frames per second.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-3-6-S2.mov|
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Additional file 3

Time-lapse sequence of MLF axon outgrowth in a TAGIMO injected
Tg(pitx2c:gfp) embryo. Ventral view, anterior to the left, ventral midline
is up. The excerpt begins at 17 hpf. The movie shows MLF axons aber-
rantly growing into the tissue surrounding the nucMLF. Images were cap-
tured every minute, and the movie runs at ten frames per second.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-3-6-S3.mov]|

Additional file 4

Time-lapse sequence of MLF axon outgrowth in a bal;Tg(pitx2c:gfp)
embryo. Ventral view, anterior to the left, ventral midline is up. The
excerpt begins at 18 hpf. The movie shows MLF axons aberrantly inner-
vating surrounding tissue and growing towards the ventral midline.
Images were captured every minute, and the movie runs at ten frames per
second.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-3-6-S4.mov]|

Additional file 5

Time-lapse sequence of MLF axon outgrowth in a TAGIMO injected
Tg(pitx2c:gfp) embryo. Ventral view, anterior to the left, ventral midline
is up. The excerpt begins at 17 hpf. The movie shows defective axon-axon
interactions that precede MLF axon extension into surrounding tissues
and alter neuronal polarity. Images were captured every minute, and the
movie runs at ten frames per second.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-3-6-S5.mov]|

Additional file 6

Time-lapse sequence of MLF axon outgrowth in a bal;Tg(pitx2c:gfp)
embryo. Ventral view, anterior to the left, ventral midline is up. The
excerpt begins at 17.5 hpf. The movie shows MLF growth cones that main-
tain physical interactions with other MLF axons once contact is initiated.
Images were captured every minute, and the movie runs at ten frames per
second.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1749-
8104-3-6-S6.mov]

Additional file 7

Time-lapse sequence of MLF axon outgrowth in a bal;Tg(pitx2c:gfp)
embryo. Ventral view, anterior to the left, ventral midline is up. The
excerpt begins at 18 hpf. The movie shows MLF growth cones that extend
branches. Images were captured every minute, and the movie runs at ten
frames per second.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-3-6-S7.mov]
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