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Abstract

Background: In the adult abdomen of Drosophila, the shafts of mechanosensory bristles point
consistently from anterior to posterior. This is an example of planar cell polarity (PCP); some genes
responsible for PCP have been identified. Each adult bristle is made by a clone of four cells, including
the neuron that innervates it, but little is known as to how far the formation or positions of these
cells depends on PCP. The neurons include a single dendrite and an axon; it is not known whether
the orientation of these processes is influenced by PCP.

Results: We describe the development of the abdominal mechanosensory bristles in detail. The
division of the precursor cell gives two daughters, one (plla) divides to give rise to the bristle shaft
and socket cell and the other (pllb) generates the neuron, the sheath and the fifth cell. Although
the bristles and their associated shaft and socket cells are consistently oriented, the positioning and
behaviour of the neuron, the sheath and the fifth cell, as well as the orientation of the axons and
the dendritic paths, depend on location. For example, in the anterior zone of the segment, the
axons grow posteriorly, while in the posterior zone, they grow anteriorly. Manipulating the PCP
genes can reverse bristle orientation, change the path taken by the dendrite and the position of the
cell body of the neuron. However, the paths taken by the axon are not affected.

Conclusion: PCP genes, such as starry night and dachsous orient the bristles and position the
neuronal cell body and affect the shape of the dendrites. However, these PCP genes do not appear
to change the paths followed by the sensory axons, which must, therefore, be polarised by other
factors.

Background

Developing animals are largely built from epithelial
sheets. Within the plane of the sheet the cells may evince
coordinated polarity — called planar cell polarity (PCP).
For example, cells may be ciliated, with the cilia beating in
a particular orientation, cells may move or divide with a
biased orientation or they may produce structures that are

themselves polarised. Clear examples are the oriented
stereocilia made by the cochlear cells of the vertebrate
inner ear [1-4], the strictly polarised hairs on a fly wing,
each one being produced by a single epidermal cell [5,6],
and the oriented growth of commissural axons towards
the floor plate of the chicken embryo [7].
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The abdomen and its mechanoreceptors.(a) The dorsal cuticle of the A compartment (cuticle types a3 to a5) contains ori-

ented mechanosensory bristles, whereas al, a2, a6 and the entire P compartment do not (after [8]). Anterior is up, posterior
is down. (b) The four cells comprising the mature bristle are a shaft cell (brown), socket cell (yellow), a single-dendrite sensory
neuron (green) and a glial-like sheath cell (red). The dendrite makes contact with the shaft at the dendritic cap [61]. As far as

possible we use this colour code in the other figures.

The adult dorsal epidermis of the abdomen of Drosophila
consists of a chain of alternating anterior (A) and poste-
rior (P) compartments and produces a cuticle that dis-
plays a precise pattern of bristles and minute hairs (Figure
1a) [8]. Both the hairs and bristles originate from the his-
toblast nest cells that, during the pupal stage, propagate
and migrate to replace the larval epidermis [9]. As they
migrate, some of the epidermal cells in the A compart-
ment become selected as sensory organ precursors
(SOPs). Here, we find that in the abdomen, as in the tho-
rax, each SOP then goes through a series of stereotyped
asymmetric divisions [10-12] to generate first five and
ultimately four cells that make a bristle (Figure 1b). These
four cells are a clone and remain physically and function-
ally associated during bristle development. There are two
external cells, the shaft cell that produces the long bristle
shaft, and the socket cell that makes the socket surround-
ing the base of the shaft. There are two internal cells, the
sheath cell, which wraps the neuron and presumably
functions like the glia of vertebrates, and the mechanosen-

sory neuron, whose dendrite attaches to the base of the
shaft and whose axon extends to the central nervous sys-
tem (CNS). The arrangement of these cells is polarised, as
is the bristle that they produce.

In both the thorax and abdomen, bristles point posteri-
orly and this is largely due to the two genetic systems that
build PCP [13-15]. It is advantageous that, like so many
other organisms, the abdomen is metamerically seg-
mented and also that the cellular events that make the
mechanosensory bristles can be filmed. Using the abdo-
men, we ask if the genetic systems of PCP orient the den-
drites and axons of the bristle neuron. To investigate, we
used time-lapse confocal microscopy of living pupae as
well as immunohistochemistry of dissected abdomens.
We find that the sensory neurons are not all oriented in
the anteroposterior (AP) axis; they behave consistently
but differently in three regions of the A compartment
(designated here as anterior, medial and posterior). The
axons of all these bristles find their way to join the periph-
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eral abdominal nerve that is located in the medial zone
and they follow this nerve to the CNS. In each zone the
mechanosensory neurons, their somata, dendrites and
axons are polarised characteristically within the sensory
cluster and with respect to the AP axis. The somata of the
neurons move with respect to the bristles, moving later-
ally and posteriorly in the anterior zone and anteriorly in
the posterior zone, movements that may involve nucleok-
inesis. Do these various aspects of polarity all depend on
those PCP genes known to act on the orientation of the
hair and shaft cells? We changed cell polarity by manipu-
lating the PCP genes such as frizzled (fz) and dachsous (ds)
[16] and found that the orientation of the shafts, the posi-
tioning of the neuronal cell bodies and the shape of the
mechanosensory dendrites are indeed all influenced by
PCP genes. However, these genes do not appear to orient

http://www.biomedcentral.com/1749-8104/3/12

the outgrowths or determine the pathways followed by
the mechanosensory axons.

Results

Identification and development of the mechanosensory
neurons

A membrane green fluorescent protein (GFP) fusion pro-
tein (cd8::GFP) was used to follow cell bodies, dendrites
and axons in living pupae. elav.Gal4 was chosen to drive
UAS.cd8::GFP [17]. However, although elav is best known
as a marker of neuronal differentiation [18], it is also
expressed earlier in the progenitor cells of the olfactory
sensilla, some of which give rise to non-neural cells
[19,20]. In the third abdominal segment, the first expres-
sion of GFP was seen at 27 hours after puparium forma-
tion (27 h APF) in a few cells that appeared laterally and

Figure 2

Development of mechanosensory neurons. Confocal projections of elav.GAL4, UAS::cd8GFP pupal abdomens showing segments
Al-A4. (a) At 26.5 h APF, abdominal peripheral nerve (pink arrowhead) can be seen in each hemisegment. (b) At 29 h APF,
cells expressing GFP have appeared laterally amongst the histoblasts that are migrating dorsally. The red square marks the area
shown in detail in (c): note the GFP-positive cell pairs oriented in the AP axis (yellow arrows), the peripheral abdominal nerve
(pink arrowhead), a cell body of a md neuron [47] (yellow arrowhead) and a motorneuron axon (green arrowhead).(d-f) 36 h
APF (d), 47 h APF (e) and pharate adult (f); note the progressive elongation of the peripheral abdominal nerve towards the
midline and the appearance of regularly-spaced cells that stain first weakly (yellow arrow) and then strongly (green arrows). As
with all subsequent figures, anterior is up and posterior is down.
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Figure 3

The differentiative divisions. (a) Divisions that generate a bristle in the anterior domain (nomenclature from reference [22]),
anterior to top, dorsal midline to left. The left side shows frames from a film and the right side shows a representation, with
colours code as in Figures Ib and 4; shaft cell (sf), brown; socket cell (so), yellow; neuron (n), green; sheath cell (st), red. The
film starts at 27 h APF with the division of the SOP and is timed as in [22]. The first division is oriented close to the AP axis,
and generates Pllb and Plla. Plla gives the shaft and socket cell, while PlIb divides to gives rise to Plllb and a small fifth or glial
cell that migrates away quickly and posteriorly (see 5.00). Plllb makes the neuron and sheath cell. Later, 6—7 h from the first
cell division, the dendrite (white arrow) and axon grow out in anterior and posterior directions, respectively. This sequence of
events is similar to the notum apart from an inconsistency with respect to the fifth cell. We saw the fifth cell migrating away
from the cluster well before the axons extended (Figure 3a, 5:00) while Gho and colleagues reported that the fifth cell
migrated away along an axon [22], although their images do not show this axon; but Fichelson and Gho [62] reported that the
fifth cell migrates away and undergoes apoptosis, apparently in the absence of an axon. In Oncopeltus, the fifth cell disappears
before axon outgrowth [12]. (b) The same sequence is followed by SOP cells in the posterior domain, but the cell positions
and orientations are different: the small fifth cell here migrates anteriorly, the dendrite and axon grow out in posterior and an
anterior directions, respectively. See the scheme in Figure 4.
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near to the abdominal peripheral nerves (Figure 2a,b).
These fluorescent cells did not resemble neurons and, by
about 29 h APF, some were arranged in pairs amongst the
histoblast cells (Figure 2b,c). These cells were followed by
time-lapse confocal microscopy and they undertook a
series of oriented asymmetric divisions (Figure 3a) as do
dividing SOP cells in the thorax; we conclude that each
pair of fluorescent cells is the product of the first division
of an SOP. Taking one example from the anterior zone,
this first division (Figure 3a at 0:00 h) was oriented more
or less parallel to the AP axis [12,21] and gave rise to a pair
of fluorescent cells (Figure 3a at 0:30). The more anterior
cell (PIIb) divided next (Figure 3a at 1:50) to generate two
daughter cells of different size, one larger PIIIb cell (Figure
3aat 2:00) and a smaller cell (Figure 3, 'g') that resembled
in anatomy and behaviour the glial or fifth cell
[12,22,23]. In all cases in the anterior zone, this cell
quickly migrated away in the posterior direction (Figure
3a at 5:00). The more posterior cell (PIla) divided to give
rise to the socket ('so') and shaft ('sf') cells (Figure 3a at
3:20) [22]. The neuron ('n') and sheath cell ('st') were
then generated by division of the PIIIb cell (Figure 3a.
2:00-5:00). The neuron became elongated and then
formed a dendritic process (Figure 3a at 6:00) that
extended towards the shaft cell and subsequently an axon
grew out from the opposite side (Figure 3a at 6:40). While
fluorescence increased within the neuron it decreased in
the other bristle cells, almost disappearing by the end of
the recording (Figure 3a at 8:00). Both dendrite and axon
continued to elongate parallel to the AP axis but in oppo-
site directions (Figure 3a at 6:00 to 8:00). A similar succes-
sion of events was seen in all the five elav-targeted
fluorescent cells that were carefully followed by time-
lapse microscopy. By 36 h APF there are many GFP-
labelled clusters evenly dispersed within each hemiseg-
ment (Figure 2d-f).

SOPs in the posterior zone followed a similar series of
divisions, but their polarity was not the same as in the
anterior zone (see below, and Figure 3b). Also, there were
differences in timing. Sensory cells in the anterior zone
differentiated more slowly than those in the posterior
zone; in the anterior zone, the axonal outgrowth began
about 7 h after the first division (Figure 3a) while in the
posterior zone some axons appeared after only 2 h 40
minutes (Figure 3b).

Incidentally, we noticed that some cells are phagocytosed
in the pupa, cells that appear to be presumptive neurons
because they express GFP under the elav promoter
strongly, have elliptical shapes and produce short-lived
bipolar protrusions (Additional file 1).

http://www.biomedcentral.com/1749-8104/3/12

The polarity of neurogenesis

To help orient the reader, the development and final
arrangements of all bristle and neuronal cells are shown
in Figure 4 as well as the pattern of development of the
progenitor cells. Note that there is a consistent AP polarity
that orients the bristles and arranges the shaft and socket
cells. However in the anterior and posterior zones of the
compartment, the axons behave very differently, follow-
ing pathways that form a mirror image pattern (Figure
5a). Also, the positions of progenitor cells vary with the
zone of origin. For example, in the anterior zone (Figure
3a, 5:00) the fifth cell migrated in the posterior direction.
In the posterior zone it migrated anteriorly (Figure 3b).
Likewise, in the anterior zone, the neuron formed at the
posterior edge of the sensory cluster and the sheath cell
was formed anterior to the neuron. However, in the pos-
terior zone, the neuron was generated at the anterior edge
of the sensory cluster and the sheath cell localised poste-
rior to the neuron (Figures 3 and 4). The other cells are
thought to appear in the same positions in all sensory
clusters throughout the A compartment: the socket cell
being generated at the posterior edge of the cluster, and
the shaft cell appearing anterior to the socket cell (Figure
4). Similar spatial and temporal variations were not found
in the notum [22].

We followed the development of the fluorescent neurons
in the living pupae up to the adult stage (Figures 2e,f and
5). In the pharate adult, each bristle is associated with a
neuron with one dendrite (connected to the base of the
shaft) and one axon (Figure 5b). During development, if
an axon encounters another, it usually fasciculates with it
and then continues on its way towards the abdominal
peripheral nerve (Figure 5b) [24], eventually becoming
bundled with that nerve. Neurons born in anterior and
posterior zones behave differently: in the anterior zone
the neurons protrude a dendrite from the anterior side
and an axon from the posterior side of the soma, but in
the posterior zone this is vice versa (Figures 3a,b, 4 and
5b). Most of the axons near the front and back of the A
compartment elongate more or less parallel to the AP axis
but axons emanating from bristles in the medial zone,
that is, near to the abdominal peripheral nerve, grow lat-
erally (Figure 5b). We also see three types of differently
shaped and oriented dendrites: in the anterior zone the
dendrites are strongly U-shaped, while in the posterior
zone, the dendrites are straight and parallel to the AP axis.
In the medial zone the dendrites are more or less parallel
to the mediolateral axis (Figure 5b).

The somata of neurons in the three zones appear to show
nucleokinesis.

In each zone, the cell bodies of the neurons become
located differently with respect to the bristle they inner-
vate. In the anterior zone the somata are usually posi-
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Polarisation and arrangement of the bristle cells in the two zones of the segment. A right hemisegment is shown with the
mature bristles on the left, the earliest stages on the right and other stages in between. Most probably, the orientations of the
divisions of the SOP and Plla are the same everywhere, while the divisions of the PllIb cells are different in the two zones; for
details, see the text and Figure 3. Considering the neurons (green) and their processes: in the anterior zone, initially the den-
drite grows anteriorly, while in the posterior zone the dendrite grows posteriorly. The dendrite becomes enwrapped by the
shaft and socket cells and, in the anterior zone, the tip of the dendrite then forms a U-shape in order to enter the socket cell
(yellow). In the posterior zone the dendrite grows straight along the AP axis. In the anterior zone, the axon grows posteriorly
while in the posterior zone it grows anteriorly. Note on this right hemisegment, the U-shaped dendrites turn to the left. On
the left hemisegment the U-shaped dendrites would turn to the right. This summary model is based on our observations and

on [22,61].

tioned latero-posteriorly to their bristle (Figures 4 and
5b). While in the posterior zone, for both the smaller and
larger bristles, the nuclei of their neurons are located ante-
rior to the bristle (Figures 4 and 5b). Finally, the neuronal
nuclei from medial zone bristles, localised around the
area of the abdominal peripheral nerve, are positioned
mainly laterally relative to the bristle (Figures 4 and 5b).
How do they take up these positions? To answer this ques-
tion, we followed the movement of the neuronal cell bod-
ies in the pupa. While the axons are extending, large
dilations are seen adjacent to the neuronal nucleus; these
are always on the side of the axon and never on the side of
the dendrite (Figure 6). These dilations appear to come
and go and we see short-lived constrictions between the
soma proper and the dilation. There are also transient
swellings more distal to the soma. As the axon extends its
tip, filopodia appear that are attached to the substrate and
show searching movements. Associated with these events,
the dendrite becomes longer. The distance between the
soma and the tip of the dendrite increases (Figure 6). In
vertebrate neurogenesis similar events are thought to be

associated with neuronal migration by nucleokinesis
[25,26].

We also observed somal movement in neurons in the pos-
terior zone. The behaviour of both the cell body and the
neuronal processes are as described above, except that the
soma moved anteriorwards. In adult posterior macrocha-
etes, the distance between the nucleus of the neuron and
the bristle socket can be as much as four epidermal cell
nuclei (approximately 35 microns; Figure 7) and we sus-
pect this separation is due, at least in part, to nucleokine-
sis.

PCP and the polarisation of the mechanosensory neuron

In the wild type, all the bristle shafts point posteriorly and
this is due to the two separate genetic systems responsible
for PCP; one employs the stan and fz genes (the Stan sys-
tem) and the other is built with the ds and fat genes (the
Ds system) [14,27]. Thus, one gets the largest disturbances
to PCP if both systems are knocked out, as in ds-stan- flies.
We now ask if either of these molecular systems polarise
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Figure 5

The dispositions of bristle cells in late pupae. (a) The socket cells (yellow nuclei) are marked by Su(H).lacZ; over the entire A
compartment the nuclei are located lateroanterior to the socket (white arrowhead) of each bristle. (b) A right hemisegment
to show the pattern of innervation of all the bristles, note the disposition of the cells and the axonal pathways depends on posi-
tion (compare Figure 4). In the anterior zone, the dendrites (white arrows) make U-shaped turns between the sockets (white
arrowheads) and the neuronal somata (n), and the axons (red arrows) extend posteriorly to meet the peripheral abdominal
nerve (pink arrowhead). In the medial zone both axons and dendrites grow medially. In the posterior zone, the dendrites
extend directly anteriorly from the bristles, and the axons continue anteriorly to join the nerve. The yellow arrowhead marks
a md neuron that lies on the nerve [47]. (c) The sheath cell is marked by pros.lacZ and the neuron with 22C10. On the left the
neuron is from the anterior zone and shows a U-shaped dendrite, with the axon growing posteriorly. On the right, a neuron is
shown from the posterior zone, the neuronal soma is located anterior to the bristle and the axon grows anteriorly. In both
cases the sheath cell (st) is closely associated with the neuron.

the dendrites and axons of the mechanosensory neurons.
What is the effect on the axons and dendrites if the polar-
ity of the bristle shafts and the nearby epidermal cells is
altered? To answer these questions we used the PCP genes
to change the polarity of the epidermis.

UAS fz-expressing clones

Fz is required for normal cell polarity [28,29]. Clones of
UAS.fz-expressing cells cause complete reversal of the
polarity of the epidermal and bristle cells within the front
of the clone and in the wild-type territory anterior to it
(Figure 8) [30]. In the anterior zone of the wild-type fly
the dendrites are U-shaped and the axons pursue a direct
path posteriorly towards the peripheral abdominal nerve
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Figure 6
Time lapse observations of the dendrite elongating. Stills
from two films (times given in hours and minutes APF),
above an anterior zone bristle is shown, and below a poste-
rior zone one; the stills are aligned with respect to the termi-
nation of the dendrites. The images show elongation of the
dendrites. On the distal sides of the neuronal somata, in both
cases, there are dilations (red arrowheads) and there are
transient constrictions between the somata and the dilation
(white arrowhead). Anterior, up; posterior, down.

(Figures 5b and 8). However when, because of a nearby
UAS.fz-expressing clone, a bristle is turned round to point
anteriorly, the dendrite can and does take a straight path
towards the bristle (no U-shape; n = 31). The neuronal
cell bodies of these reversed bristles (microchaetes) are
now found to be separated by two or three epidermal cells
from the bristles (Figure 8), exactly the distance separating
bristles (microchaetes) from the neural somata in the
wild-type posterior zone. Whether a U-shape forms or not
depends on the relative positions of the neuron and
socket, and also of the orientation of the bristle.

It seems that the dendrite must enter the base of the shaft
in a direction parallel to the axis of the shaft and if the
neuronal body lies lateral or posterior to the bristle socket,
the dendrite has to make a U-turn to do so. To test the
contribution of the bristle shaft, we studied flies mutant
for the musashi gene [31]. In such flies, the bristle shaft cell
is frequently lost and there are, usually, extra socket cells.
In these cases a U-shaped dendrite is never observed, the
dendrite appearing to be connected directly to the socket
cell (data not shown). This suggests that it is the entry to
the base of the shaft that shapes the dendrite. Our obser-

http://www.biomedcentral.com/1749-8104/3/12

Figure 7

The location of the neuronal somata. The posterior zone of
the anterior compartment of segment 3 showing two macro-
chaetes marked with the his2:DGFP construct and immunos-
tained in the late pupa. Anti-Elav antibody identifies neuronal
cell bodies (green) and anti-GFP marks the nuclei of all epi-
dermal cells (blue). The nuclei of these neurons are located
three to four epidermal cell widths away from their bristle.

vations show that overexpression of fz reverses the orien-
tation of the dendrite as they extend from the soma but
leaves the pathways followed by axons unaffected. The
axons always follow their normal paths, whether the bris-
tle and its neuron are overexpressing fz or are wild type or
whether the epidermal cells amongst which it is growing
are wild type or mutant.

ectoDs-expressing clones

These clones express a variant of the Ds molecule that
lacks the cytoplasmic domain. They strongly reverse
polarity of the bristles and epidermal cells behind the
clone, a phenotype similar to that of fz- clones [27]. How-
ever, clones expressing ectoDs, because they affect the Ds
system, could alter polarity by a different mechanism than
fz clones. Nevertheless, all aspects of bristle innervation
are the same in both fz- and ectoDs-expressing clones; for
example, dendrites of reversed bristles located in the ante-
rior zone no longer show a U-shape (n = 17; data not
shown).
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Figure 8

A UAS.fz-expressing clone affects bristle polarisation. Using
young adults, neurons were stained with 22C10 antibody
(green) and this image and a DIC image were combined. A
UAS.fz clone was induced in the anterior domain of the A
compartment. The clone is marked with the yellow marker
that can be identified by the light colour of the bristles. Wild-
type hairs and bristles that localize anterior to the yellow
bristle (y-) have reversed polarity. These reversed bristles
are localized in the anterior zone of the compartment, yet
their dendrites (white arrows) are straight (no U-shape) and
the somata of the neurons (n) are posterior to the bristles.
The y- bristle is also in the anterior zone but has lateral polar-
ity; its dendrite (white arrow) makes a small U-shaped turn.
Nevertheless, all axons (red arrow) grow posteriorly
towards the nerve as they normally do.

ds stan-flies

When both the Stan and the Ds systems are defective, PCP
is grossly disturbed, with the bristles and hairs pointing in
many directions [27]. When individual bristles in the
anterior zone are reversed, we see the same consequences
as with UAS.fz-expressing clones; the U-shaped turns of
the dendrites are absent (Figure 9a) and the neuronal
somata are located posterior to the bristles. In the poste-
rior zone, these ds- stan pupae also have some reversed

http://www.biomedcentral.com/1749-8104/3/12

Figure 9

Polarity disturbance in ds- stan- pupae. Dissected ds- stan late
pupae stained for 22C10 for neurons. (a) Anterior zone of
an A compartment. The hairs show disturbed polarity, bris-
tles (sockets are marked with a white arrowhead) are
reversed and their associated dendrites (white arrows) elon-
gate straight with no U-shape. (b) Posterior zone of an A
compartment showing a reversed bristle. Note that the den-
drite (white arrow) has a U-shaped termination. Sockets are
marked with white arrowheads.

bristles, now connected to U-shaped dendrites (Figure
9b). Overall, the arrangements of bristles and neuronal
somata are considerably disorganised in ds stan-flies, as is
clear from Figure 9. In wild-type abdomens about 60% of
the neurons from the anterior zone lie lateroposterior to
the bristles and 20% are posterior to them (n = 37; Addi-
tional file 2), while in ds- stan- flies only about 30% of
these neurons are lateroposterior to the bristles and 60%
are posterior (n = 37). However, in both anterior and pos-
terior zones, once the axons have left the bristles, no mat-
ter how the bristles or epidermal cells are oriented, the
axons follow routes typical of the wild type and grow
directly towards the abdominal peripheral nerve near the
middle of the A compartment.

Discussion

We investigate, in the Drosophila abdomen, the contribu-
tion of PCP to the orientation of the neuronal compo-
nents of the mechanosensory bristles, including the
neuronal somata, axons and dendrites. We report that
PCP has input into the form of the dendrites and the posi-
tioning of cell bodies. However, the pathways followed by
axons appear to be constant, regardless of the orientation
of the bristles and the PCP genotype. These axons also fol-
low their usual paths, independent of the polarity
(reversed or normal) of the epidermal cells they grow
over.

The development of abdominal bristles

The development of the adult bristles in the abdomen is
not well known. Shirras and Couso [32] identified cells in
the histoblast nests that stained for neuralised about 20 h
APF, and suggested these might be precursors (SOPs) of
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the posterior row of macrochaetes. We see the first divid-
ing SOP cells among the migrating histoblasts about 28 h
APF, and the first signs of differentiating neurons some 90
minutes later (Figure 3a) before the shaft and socket cells
differentiate [9]. At this time, the histoblast cells have
reached only about half way on their journey to the dorsal
midline [9]. It follows that the axons are able to orient
towards the peripheral abdominal nerve, even as they are
in the midst of a mass migration of epidermal cells.

In the larval sensory organs, and in most parts of the
adult, including the wing margin and the notum, the sen-
sory organs are generated close to the sites where they will
finally differentiate [33]. In the notum, SOP cells are
selected from cell clusters that are relatively fixed in posi-
tion and located by a prepattern that is made by interact-
ing gene products [34]. The dynamic situation in the
abdomen presents new problems, because in spite of the
rapid migration of the sheet of histoblasts, the bristles are
eventually very evenly spaced, suggesting that the SOP
cells and their descendents adjust their positions, even
after they have been identified. This no doubt relates to
the fact that bristles generated within a particular epider-
mal clone in the abdomen (but not the thorax) are fre-
quently displaced from it, sometimes for several cell
diameters [35].

Polarity and bristle development

In our opinion some form of planar polarity is essential to
the organisation of epithelia and is likely to operate from
the beginning of development; indeed, there is evidence
that PCP acts in the early embryo [36-38] and influences
the denticles of the larva [3,27] apart from its many effects
on the adult. Nevertheless, studies of PCP in the abdomen
have concentrated only on cuticular structures such as the
bristle shafts (which grow out between 41 h and 48 h APF
[9]) and it is not clear what, if any, other outputs of PCP
there might be. We see here that the differentiative cell
divisions of the bristles [21], the directional migration of
the neuronal somata and the outgrowth of axons and den-
drites are all oriented, implying the presence of polarising
factor(s). Here, we asked whether these factors depend on
previously defined PCP genes, such as the Stan system and
the Ds system [27].

Previous studies have described the polarity of bristle
development in the notum [21,22,39], but the situation
in the abdomen is different because the cells' behaviour
varies with their position in the A compartment. For
example, in the anterior zone of the A compartment, the
neuron appears posterior to the sensory cell cluster,
whereas in the posterior zone it is found anteriorly. The
fifth cell migrates in opposite directions in the two zones.
Also, the dendrites differ; in the anterior zone each is con-
nected to its bristle with a U-shape, but, in the posterior
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zone each dendrite reaches towards the bristle in a straight
line. Further, the axons extend in opposing directions in
the anterior and posterior zones and even grow laterally in
the medial zone. These behaviours are the outcome of sev-
eral mechanisms that include preferential orientation of
the differentiative mitoses, local cell rearrangement, the
oriented extension of dendrites and axons and the direc-
tional outgrowth of the hairs and bristles. Some of these
are consistent over the A compartment (for example, the
orientation of bristles — they always point posteriorly) and
others not.

Experimentally we used mutations or cell clones to rotate
the bristles and see which features were reoriented in a
bristle-autonomous way. We found that the shape of den-
drites and the way they contact the bristles (with or with-
out a U-shaped turn) was determined entirely by the
orientation of the bristle and the relative position of the
neuronal soma. In short, if the dendrite can extend from
the soma directly into the socket at a point opposite to the
shaft (as happens in the wild type at the back of the A
compartment where the neuronal soma lies anterior to
the bristle), it does so. If not, the dendrite makes a U-turn
so that it can enter the bristle from the side opposite to the
shaft (as happens in the wild type at the front of the A
compartment where the nerve cell lies posterior to the
bristle). This suggests that there is only one possible entry
direction into the socket of the bristle. It also shows that
there is no necessary concordance between the orienta-
tion of the bristle, the position of the nerve cell and the
paths (in anterior or posterior directions) followed by the
neurites, presumably because these latter are determined
by different factors.

Nucleokinesis?

The dendrite appears to connect the neuron to the bristle
socket and shaft cells and, subsequently, the neuronal
soma moves away as the dendrite is extended. At about
the same time the axon grows towards the peripheral
abdominal nerve and eventually reaches the CNS. There
appears to be a typical growth cone at the axon terminal,
which shows filopodia and 'searching movements', so we
imagine the axon grows as other axons do. But how is the
dendrite extended? We conjecture that this process
involves, at least in part, nucleokinesis, meaning that the
nucleus moves distally and inside the growing axon. This
movement is directed posteriorly in the anterior zone and
anteriorly in the posterior zone. However, the evidence
for nucleokinesis is only suggestive: we see unstable dila-
tions and swellings always on the axonal side of the neu-
ronal nucleus and, at the same time, elongation of the
dendrite, detected as an increase in the distance from the
bristle to the nucleus of the neuron. Nucleokinesis has
been much discussed in vertebrates, and several mecha-
nisms proposed [25,40-42] but the situation is far from
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clear. Further studies might now take advantage of in vivo
imaging of the abdomen and the molecular genetics of
Drosophila.

The migration of neurons or their precursors was first
described during development of the vertebrate brain (for
a review, see [43]) and it is essential for normal brain
development (see, for example, [44]). In insects, there are
but few reports of neural migration. During development
of the enteric nervous system of the moth Manduca sexta
some neurons migrate on the surface of the midgut [45].
Neuronal migration has also been observed in the Dro-
sophila embryonic nervous system [46] and in persisting
larval sensory neurons [47]. In the nematode Caenorhab-
ditis elegans neuronal migration has been studied [48,49].

Planar cell polarity and neurogenesis

Perturbing the pattern of expression of PCP genes can
change the polarity of nearby bristle shafts [13,14] and, as
we show here, can alter the relative positions of the neu-
ronal cell bodies. However, the pathways followed by the
mechanosensory axons are unaffected by the polarity of
the epidermis: even in an extreme case where the polarity
of the epidermis is randomised in ds-stan- flies, the orien-
tation of mechanosensory axons is unaffected. Similarly,
in the wing it has been observed that the orientation of
axon growth is not dependent on the overall polarity [50].
In vertebrate systems it is not known if PCP acts directly
on axon orientation, although there are some observa-
tions indicating that it might [51-53].

The division of Plla produces the socket and shaft cell,
cells that are consistently aligned with respect to the bris-
tle in all parts of the A compartment. This suggests that the
division of Plla and the disposition of its progeny are
dependent on PCP. However, its sister cell (PIlb, generat-
ing cells on the neuronal and glial side of the lineage)
makes cells that are apparently oriented and positioned
somewhat independently of PCP genes: the localisation of
the neuronal cell body (behind or in front of the bristle)
and the positioning of the fifth cell, as well as its direction
of migration, are opposite in the anterior and posterior
domains of the A compartment (Figure 4). Thus, while
UAS.fz-expressing clones suggest that the bristle shafts
point normally and consistently from high levels to low
levels of Fz, the neuronal processes are oriented and the
neuron and associated cells are positioned by other,
unknown factors.

This apparent lack of requirement for the Stan system
[27], with respect to the pathways followed by axons, is
surprising as many experiments have implicated Stan in
axon guidance and neurogenesis [52,54-59]. In any case,
our observations do not tell us what makes the axons
grow in opposite directions in the anterior and posterior
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zones of the segment. However, as a consequence of this
behaviour, the sensory axons never enter the regions close
to the segment boundary, ensuring that all the axons ema-
nating from bristles of any one segment are bundled
together.

Conclusion

In each Drosophila abdominal segment, the epidermal
cells, the bristle shaft and the socket cells are all polarised
in the same way. However, the orientation of developing
mechanosensory neurons, the sheath cells and the behav-
iour of the transitory fifth cell differ in ways depending on
whether they are located at the front or the back of the seg-
ment.

Experiments with genetic mosaics show that some of
these polarisations are determined by PCP, while others
are not - for example, control by PCP of the orientation
of bristle shafts affects both the orientation of mechano-
sensory dendrites and the relative positions of the somata
of neurons. However, our results show that the mechano-
sensory axons are oriented independently of PCP.

Materials and methods

Fly stocks

Unless stated otherwise, Flybase [16] entries of the muta-
tions and transgenes referred to in the text are as follows.
CD2y+: Rnor|CD2hs-PJ, hs.FLP: Scer\FLP1"s:S,
his2::DGFP:His2 AyT:Avid\GFP-S65T  [JAS.cd8::GFP:  Mmus)
CdBaSce\UAS.TAVIA\GEP  elgy. Gal4:  elavC155.  tub.Gal4:
Scer\Gal4alphaTub84B.PL tyh Gal80: Scer|Gal80alphaTub84B.PL -
:dsUAO71 - fz- 221 msi msi2. Su(H).lacZ: Su(H)k07904,
pros.lacZ: pross032010, [JAS.ectoDs encodes a Ds form that
lacks the cytoplasmic domain [27]. FRT42:
P{neoFRT}42D. FRT2A: P{FRT(w")}2A.

Flies were cultured at 25°C on standard food. A y w stock
was used as the wild-type strain. All live imaging experi-
ments were carried out on elav.Gal4 UAS.cd8::GFP flies. fz-
clones were produced using y w hs.FLP; fzri FRT2A/CD2y+*
hs.GFP ri FRT2A. tub.Gal4 UAS.ectoDs clones were
obtained using y w hs.FLP; FRT42 tub.Gal80 CD2y+/FRT42
pwn sha; UAS.ectoDs/tub.Gal4. Flies described as dsstan
were actually y w hs.FLP; dstA071CD2y+ FRT42 stan3/
dsUAC71CD2y+ FRT42 pwn stanf> sha.

In vivo time-lapse confocal microscopy

White pupae were collected and lined up on double-sided
tape on a microscope slide with the dorsal abdomen fac-
ing upwards. They were kept at 25°C in Petri dishes con-
taining moist filter paper. Staging time was denoted as
hours APF. After removal of the pupal case over the abdo-
men, pupae were placed in an imaging chamber [60] and
a drop of water was added to the pupae. Pupae were
imaged from 27 h APF to the pharate adult stage using a
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BioRad MRC-1024 system laser scanning confocal micro-
scope (Hercules, CA, USA). We used the hemisegment of
segment 3 when possible, because its pigmentation is sim-
ilar in males and females, and its position in the middle
of the abdomen makes it easy to study. Approximately
10-15 pum Z-series of confocal images were collapsed
using confocal software. Complete adult development
took place in the chamber, and adults could hatch from
their pupal cuticle, displaying abdomens with a wild-type
pattern of bristles. Images were processed using Adobe
Photoshop, ImageReady and Illustrator (Adobe Systems,
San Jose, CA, USA).

Clonal inductions and immunohistology

Clones were induced by heat-shocking third instar larvae
for 1 h at 34.5°C or 30 minutes at 37°C. Pupae were dis-
sected in phosphate-buffered saline (PBS) in a plastic dish
covered with sylgard. The dorsal epithelium was gently
washed with PBS. The samples were then fixed in 5.3%
formaldehyde (methanol-free, Polysciences Europe,
Eppelheim, Germany) in PBS for 20-30 minutes at room
temperature. Samples were transferred to 0.5 ml Eppen-
dorf tubes, washed four times with PTX, and then incu-
bated 30 minutes with blocking solution (PTX/1% bovine
serum albumin (BSA)). Primary antibodies, 22C10
(mouse, from Hybridoma Bank), anti-GFP (rabbit, from
Molecular Probes, Invitrogen Ltd, Paisley, UK), anti-Elav
(rat, Molecular Probes), anti-B-galactosidase (rabbit, from
Matthew Freeman laboratory, MRC LMB), and anti-pros-
pero (mouse, Molecular Probes) were diluted in PTX/1%
BSA 1:40, 1:1,000, 1:500 and 1:1, respectively. Samples
were incubated with the primary antibodies for 2 h, and
washed with PTX/BSA; incubated with secondary antibod-
ies, FITC or Texas Red-conjugated anti-mouse, anti-rabbit
or anti-rat (1:200, Jackson Inmunoresearch Laboratories,
West Grove, PA) in PTX/1% BSA. Samples were then
washed again, and were kept in Fluoromount-G medium
(Southern Biotech, Birmingham, AL, USA) overnight.
Abdomens were mounted flat on a slide, with bristles fac-
ing upwards, and kept for 2 days at room temperature in
the dark, for the fluoromount to solidify. Images were
captured with Auto-Montage (Syncroscopy, Cambridge,
UK) and processed with Adobe Photoshop.

Abbreviations

A: Anterior; AP: Anteroposterior; APF: After puparium for-
mation; BSA: Bovine serum albumin; CNS: Central nerv-
ous system; P: Posterior; PBS: Phosphate-buffered saline;
PCP: Planar cell polarity; SOP: Sensory organ precursor.
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Additional material

Additional file 1

Some cells expressing elav strongly are phagocytosed. Stills from a movie
(times given in hours and minutes APF). An individual cell showing few
signs of neuronal differentiation (elliptical shape, bipolar protrusions) is
followed here. At 30:45 short processes seem to protrude but they are not
visible afterwards. A haemocyte appears (33:15, blue arrow) and comes
in close contact with the differentiating neuron (33:30). After this tran-
sient contact the haemocyte leaves, laden with fluorescent debris, while the
neuron now loses its fluorescence and seems to degenerate (33:45). Per-
haps we are seeing the death of supernumerary bristle cells or precursors
during development, which could influence the final number and/or the
spacing of the bristles. Cell death of the larval epidermal cells accompanies
the spreading of histoblasts, and these are also eaten up by haemocytes [9].
Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-3-12-S1.jpeg|

Additional file 2

Determining position of the neuronal somata relative to their associated
bristle. Wild-type and ds-stan” pupae were stained with Elav or 22¢10
antibodies and mounted flat. The origin of the coordinate system was fixed
at the centre of the socket cuticular structure (considered to represent the
position of the adult bristle). The x- and y-axes correspond to the dorso-
lateral and AP axes, respectively. The plane of the epithelium corresponds,
therefore, to the xy plane. Based on the coordinates of the centre of the
socket cuticular structure (0,0) and the centre of the neuronal soma (x,,
V,), we measured the angle between (x,, y,) and the x-axis. Thus, five cat-
egories were defined according to the angle: lateral (o = 0° + 5), latero-
anterior (0° +5 <0 <90° +5), anterior (o = 90° + 5), posterior (o =
270° £ 5), and latero-posterior (270° +5 <9 < 360° + 5).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1749-
8104-3-12-S2.jpeg|
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