Skip to main content
Fig. 1 | Neural Development

Fig. 1

From: Timing the spinal cord development with neural progenitor cells losing their proliferative capacity: a theoretical analysis

Fig. 1

PN Model for the dynamics of Modes of Division (MoD) and evolution of cells population (P,N) in the developing ventral spinal cord. a MoD measured by [14] (square dots) and [11] (circles, bars are 95% CI). Black : pp-divisions, red : nn-divisions, blue : pn-divisions. Curves report the fitted continuous time functions. b Evolutions of the pools of progenitors (black) and neurons (red) from [14]. Circle points indicate estimates of P/N proportion from [11], and scaled to the total amount of cells. Black and red lines report numerical solution of system (3) using MoD shown in a). Green line reports the analytical solution for the P-pool (Eq. 6). c CDC25B Gain-of-Function promotes neurogenic divisions so that the transition from proliferation to differentiation is shifted 8 hours sooner (thick lines) than the CTL profiles (thin lines). d Predicted evolution of the pools of progenitors (black) and neurons (red) under GoF (thick lines) compared to CTL (thin lines). The dots report the proportion of progenitors / neurons measured in Bonnet et al. in GoF condition [11], scaled to the total amount predicted at their respective times. e CDC25B- ΔCDK Gain-of-Function have a differential effect upon neurogenic divisions: pp-divisions are shifted 2 hours sooner and nn-divisions are shifted 4 hours later. As a consequence, the complementary PN profile is enhanced (compared to the CTL) and lasts longer. f The dynamics of the two pools is very close to the CTL dynamics and match with the measured proportions given in Bonnet et al. [11]

Back to article page