Skip to main content
Fig. 7 | Neural Development

Fig. 7

From: Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina

Fig. 7

Prdm13 negatively regulates Ptf1a in a feedback loop. a RT-qPCR analysis of prdm13 and ptf1a expression in animal cap explants isolated from embryos injected with ptf1a-GR, mprdm13, lacZ mRNA and morpholinos as indicated, and collected when sibling embryos reach stage 26. Expression levels in non-injected caps have been set to 1. Shown are representative results of one out of two independent experiments. Data are presented as means of technical triplicates ± SD. b RT-qPCR analysis of ptf1a, prdm13 and neurog2 expression in stage 39/40 dissected eyes from control-MO or prdm13-MO injected embryos. Expression level in control caps has been set to 1. The graph represents a pool of 3 to 4 experiments. Data are presented as mean ± SEM. p < 0.05 (*) (Mann-Whitney test). c Drawing illustrating the interactions between ptf1a and prdm13 suggested by our results. As in the neural tube [22], we found that Ptf1a positively regulates prdm13 expression. It has previously been shown that Ptf1a binds, along with an E protein and Rbpj (PTF1-J complex), to a conserved 2.3 kb sequence located 13.4 kb 5′ to the ptf1a coding region and regulates its own transcription [53]. We showed here that Prdm13 negatively regulates its own expression through a negative retro-control of ptf1a expression. The underlying mechanism remains to be investigated. Our results also do not exclude the possibility that Prdm13 could in addition directly repress its own expression

Back to article page