Skip to main content
Figure 8 | Neural Development

Figure 8

From: Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum

Figure 8

Early/posterior-born Purkinje cells normally change their posture to initiate the formation of a plate between E13.5 and E14.5. (A-E) Distribution and orientation of E10.5-born Purkinje cells in E14.5 normal (ICR mouse) cerebella. Traces of representative cases of Purkinje cells that were in an outer zone and oriented perpendicular to the pial surface (about 40% of the total E10.5-labeled Purkinje cells, including cells shown in (C, D)), mostly consisting of the Purkinje plate (PP), are summarized in an illustration of a standardized cerebellum. Note that a thin axon-like process (white arrowheads) is situated antero-ventricularly while a thick cytoplasmic part (double blue arrowheads) is seen postero-pially with extension of a few thick processes (arrows) towards the pial side (C, D). (F-I) Comparison of the relationship between Purkinje cell somata (stained with anti-Corl2 (F, H) and anti-Lhx1/5 (G, I)) and axon bundles (stained with anti-Neurofilament (F, H)) between normal (F, G) and reeler (H, I) cerebella at E14.5. Note that the PP in normal cerebella is demarcated by an axon bundle (arrow) running below. In reeler cerebella (n = 3 independent samples), the lack of PP (asterisked part) is associated with the persistent positioning of the axon bundle on the pial side. Tbr1 immunostaining suggests that DN neuron formation is normal in reeler. (J-K') None of the E10.5-born Purkinje cells adenovirally examined in E14.5 reeler cerebella (0/32 cells) showed the perpendicular orientation seen in normal cerebella. Three representative cases of cells that exhibited a horizontal orientation (13/32 cells) with a well-anteriorly extended axon-like process are traced. The remaining cells are more radially oriented, with axon-like fibers at the top, as frequently observed in E13.5 normal and reeler cerebella.

Back to article page