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Sympathetic neurons and chromaffin cells share a
common progenitor in the neural crest in vivo
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Abstract

Background: The neural crest (NC) is a transient embryonic structure unique to vertebrates, which generates
peripheral sensory and autonomic neurons, glia, neuroendocrine chromaffin and thyroid C-cells, melanocytes, and
mesenchymal derivatives such as parts of the skull, heart, and meninges. The sympathoadrenal (SA) cell lineage is one
major sub-lineage of the NC that gives rise to sympathetic neurons, chromaffin cells, and the intermediate small
intensely fluorescent (SIF) cells. A key question is when during NC ontogeny do multipotent progenitors segregate into
the different NC-derived lineages. Recent evidence suggested that sympathetic, sensory, and melanocyte progenitors
delaminate from the thoracic neural tube (NT) in successive, largely non-overlapping waves and that at least certain NC
progenitors are already fate-restricted within the NT. Whether sympathetic neurons and chromaffin cells, suggested by

co-expressed characteristic marker combinations.

Sympathoadrenal progenitors

cell culture studies to share a common progenitor, are also fate segregated in ovo prior to emigration, is not known.

Results: \We have conducted single cell electroporations of a GFP-encoding plasmid into the dorsal midline of
E2 chick NTs at the adrenomedullary level of the NC. Analysis of their derivatives, performed at E6, revealed that
in most cases, labelled progeny was detected in both sympathetic ganglia and adrenal glands, where cells

Conclusions: Our results show that sympathetic neurons and adrenal chromaffin cells share a common progenitor in
the NT. Together with previous findings we suggest that phenotypic diversification of these sublineages is likely to
occur after delamination from the NT and prior to target encounter.
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Background

The neural crest (NC) is a transient structure in developing
vertebrate embryos that arises at the interface between the
epidermal and neural ectoderm. Upon neural tube (NT)
formation, NC cells delaminate from its dorsal aspect and
undergo an epithelial-to-mesenchymal transition followed
by migration to their target locations. NC cells give rise to
many different cell types, including neurons and glia of the
autonomic and sensory nervous systems, neuroendocrine
chromaffin cells in the adrenal medulla and other locations,
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thyroid C cells, melanocytes, and selected populations of
mesenchymal cells [1]. The sympathoadrenal (SA) cell
lineage is a major sub-lineage of the NC that gives rise to
sympathetic neurons, intra- and extra-adrenal chromaffin
cells, and the small intensely fluorescent (SIF) cells,
which are intermediate between sympathetic neurons
and chromaffin cells [2-5]. SA derivatives share several
features, including the ability to synthesize, store, and
release catecholamines, but also exhibit traits specific
for each cell type, such as axons, dendrites, and
neurofilaments, which are only found in sympathetic
neurons but not chromaffin cells.

After delaminating from the NT, the earliest emigrating
NC cells migrate ventrally to the area of the dorsal aorta
[6-8]. Here, they acquire catecholaminergic features,
instructed by bone morphogenetic proteins 2/4/7, which
are secreted by cells of the wall of the dorsal aorta [9,10].
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Furthermore, a series of interacting transcription factors
including MASH-1, Phox2a, Phox2b, dHand, Gata2/3,
and Insml, were found to be essential for the generation
of the SA catecholaminergic phenotype [11-19]; for
reviews see [2-6,20,21].

Cell culture studies using isolated SA progenitor cells
from embryonic and early postnatal sympathetic ganglia
and adrenal gland have suggested that glucocorticoids
play a crucial role in the diversification of SA cells into
sympathetic neurons and chromaffin cells [22-24];
for reviews see [2,5,6,25], by suppressing a neuronal
differentiation programme in SA cells destined to
become chromaffin cells. However, analysis of mice
deficient for the glucocorticoid receptor [26] or lacking
an adrenal cortex [27] revealed that chromaffin cell differ-
entiation was largely unimpaired suggesting that cues
unrelated to glucocorticoid receptor signalling and the
adrenal cortex triggered the chromaffin phenotype. This
notion was corroborated and extended by studies showing
that chick SA progenitors are already heterogeneous in
terms of neurofilament-M (NF-M) expression prior to
populating the adrenal gland and sympathetic ganglia
[28] with presumptive neuronal cells co-expressing
tyrosine hydroxylase (TH) and NF-M, and presumptive
neuroendocrine cells being TH-positive and NF-M-nega-
tive. This indicated that specification of the respective
phenotypes occurred either during migration or even
prior to migration at the level of the NT.

A recent study by Krispin et al. [7,29] showed that in
the trunk N'T of avian embryos, precursors for sympathetic
ganglia, Schwann cells, sensory dorsal root ganglionic
neurons, and melanocytes leave the NT in successive,
largely non-overlapping waves, some being already distinct
while still residing in the NT. Although adrenal chromaffin
cells were not addressed in this study, the results raised the
possibility that sympathetic neurons and chromaffin cells
might also already be distinct at the level of the NT. We
therefore conducted single cell electroporations (EPs) of
green fluorescent protein (GFP)-DNA into pre-migratory
NC cells at the level of somites 18—24 (“adrenomedullary
level”), where both chromaffin cells and sympathetic neu-
rons arise [30]. The timing and location of EPs was directed
to label the earliest progenitors that undergo delamination,
previously shown to generate the sympathetic lineage
[7,29], and the progeny of labelled cells was then analysed
at E6 following homing to their target areas. Our results
indicate that in more than 80% of the cases the progeny of
a single labelled cell ends up in both sympathetic ganglia
and adrenal gland, being mostly NF-M-negative in
the adrenal gland and NF-M-positive in sympathetic
ganglia. This suggests that chromaffin cells and sympathetic
neurons share a common progenitor in the NT and that
diversification of the phenotypes occurs during migration or
assembly in primary sympathetic ganglia at the dorsal aorta.
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Results and discussion

Transfection of GFP-encoding DNA into single dorsal NT
progenitors

Stereomicroscopic and histological analyses were performed
3.5 h following focal EP of the dorsal NT to examine the
extent of single cell labelling upon initial GFP protein
expression. Figure 1A schematically reveals the position of
electrodes, injection site of GFP-DNA, and a single labelled
cell in the dorsal NT. A single GFP+ cell at 3.5 h is shown
by live-epi-fluorescence imaging (Figure 1B). By 24 h the
cell had migrated out from the NT and generated a cluster
of three cells (Figure 1C). Further confirmation of
clonal transfection was obtained by confocal analysis
(Figure 1D-D””). A summary of evaluated cases (Figure 1E)
reveals that in 49 out of 69 cases showing labelled cells,
only one GFP+ neuroepithelial cell (71%) was detected at
the NT level. In 19 cases (27.5%) two cells were detected,
and in one more case three cells were visible. Notably,
the number of embryos showing labelled cells was
approximately 12% of total electroporations performed;
this low efficiency is in further support of the clonal
nature of transfections.

Distribution of the progeny of single NC progenitors
following target organ colonization
Electroporated embryos that showed a single labelled
progenitor at 3.5 h post-EP were further incubated till
E6 when adrenal gland and sympathetic ganglia were
established and the progeny of electroporated cells had
reached these organs. Embryos were then fixed, paraffin
embedded and stained with GFP and TH antibodies.
Figure 2 shows GFP+/TH+ cells in a sympathetic
ganglion (Figure 2A,B) and adrenal gland (Figure 2C,D),
respectively. As summarized in Figure 2E in 24 out of 29
cases of the single-cell EPs we detected GFP+/TH+ cells
in both locations, i.e., adrenal gland and sympathetic
ganglia (P = 0.0004). In two cases GFP+/TH+ cells were
found within the adrenal gland only, and in another
three cases in sympathetic ganglia only. The number of
GFP-positive cells in each tissue varied from 1 to 18 cells
in sympathetic ganglia, and 2 to 12 in adrenal glands,
respectively (Table 1). Together, the number of cells in
clones within sympathetic ganglia compared to adrenal
glands was not statistically different (P = 0.5). Notably,
in the 29 cases presented in which labelled progeny were
detected in SA derivatives no additional NC derivatives
were found to contain labelled cells. This confirms the
existence of early fate restrictions as initially described
by Krispin et al. [7,29] and more specifically, it further
supports the notion that SA progenitors are segregated
from the other neural derivatives of the NC.

In mammalian and avian sympathetic ganglia, neurons
are not the exclusive type of cell found within the
ganglion. In chick, sympathetic ganglia harbour about
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Figure 1 Single-cell EP of GFP-DNA into the dorsal neural tube. (A) Diagram showing the two-step procedure for single-cell EP, beginning
by plasmid microinjection and followed by application of ventro-dorsally directed electric pulses. Note position of electrodes, injection site, and
position of single electroporated cell. (B,C) Live-visualization in ovo at 3.5 h (B) and 24 h (C) after EP. (D) Histological cross section showing
confocal analysis of a single GFP-expressing cell in the dorsal NT 3.5 h after EP visualized with an anti-GFP-antibody, combined with DAPI nuclear
staining (blue). D, D', D", and D" show four representative focal planes out of 23 planes from a Z-stack of a 10 um thick section. Samples were
optically screened at 0.35 pm increments. D" shows orthogonal projections. (E) Summarizes results of 69 experiments, with 71% successful
single-cell-EPs verified by immunohistology, and 27.5% of the cases, where two cells were seen. In 1.5% of the cases, GFP was visualized in three
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25% chromaffin-like cells [31]. Likewise, mammalian and
avian adrenal glands contain a small proportion of
neurons, in addition to the chromaffin cells [32,33]. Thus,
the localization of a TH+ cell in sympathetic ganglia
and adrenal glands, respectively, does not allow to
unequivocally identify it as a neuron or chromaffin
cell, respectively. However, in the chick embryo NF-M
expression is indicative of a neuronal phenotype [28,34].
We therefore performed NF-M in situ hybridization in
combination with GFP- and TH-immunostaining to verify
neuronal and neuroendocrine chromaffin phenotypes in
the respective locations. Figure 3A-C shows a GFP+/TH+/
NF-M+ cell in a chick sympathetic ganglion at E6,
confirming this cell as a neuron; Figure 3D-F reveals two
GFP+/TH+/NF-M- cells in an E6 adrenal gland indicating
that these are chromaffin cells. All labelled cells shown in
Figure 3 are derivatives of the same clone. In total, 6
single-cell electroporated embryos (out of 24 embryos
with derivatives detected in both sympathetic ganglia and
adrenal gland) were analysed for GFP and TH immunore-
activities, and NF-M mRNA expression. Figure 3G shows
that only one sympathetic ganglion contained, in addition
to neurons, a GFP+/TH+/NF-M-negative, presumptive

chromaffin-like cell, while three out of six analysed
adrenal glands harboured neurons in addition to
chromaffin cells. Hence, most cells (1-6) in sympathetic
ganglia are NF-positive (P <0.001) and most cells (1-5) in
adrenal glands are NF-negative (P = 0.0017).

Altogether, our data suggest that a single NC progenitor
residing in the NT before delamination gives rise to both
chromaffin cells and sympathetic neurons. Our findings
therefore strongly support the notion that sympathetic
neurons and chromaffin cells still share a common
progenitor in the dorsal NT prior to delamination.

Consistent with this result, additional NC-derived
sublineages are likely to be segregated only after emigration.
For example, neurons and glia of sensory ganglia become
segregated within the DRG themselves by Notch-dependent
lateral inhibition [35]. A similar mechanism might account
for segregation of SA progenitors as members of the
Delta/Notch family are expressed in subsets of ventrally
migrating SA cells [6].

Although growing evidence suggests that fate restrictions
in the NC may occur prior to cell emigration [7,29,36-38],
this notion should be systematically examined for specific
derivatives by single cell lineage analysis in vivo at the
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Figure 2 Analysis of GFP-labelled cells in sympathetic ganglia
(A,B) and adrenal gland (C,D) at E6. (A) Sympathetic ganglion
(white demarcation) harbours two GFP-positive cells (green). (B) TH
antibody staining of the same section as in (A). Arrows mark the two
co-labelled cells. (C) Adrenal gland (white demarcation) harbours
one GFP-positive cell (green). (D) TH antibody staining of the same
section as in (C). Arrows point to the TH+/GFP-positive cells. Note
the autofluorescence of red blood cells in dorsal aorta (C,D). (E)
Distribution of GFP+/TH+ cells in sympathetic ganglia and adrenal
gland at E6, following single cell EP into the dorsal NT at E2. Scale
bars: 50 um. N, notochord; DA, dorsal aorta.

appropriate time and axial location. In our study, this was
done by performing single cell EP into the dorsal NT at the
time and axial levels from which adrenal chromaffin and
sympathetic neuronal progenitors delaminate. Single cell
EP is an established method that allows the labelling
of an individual cell in the midline of the NT before
delamination. Although in ovo single cell EP is a
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Table 1 Number of GFP+ cells per clone in the various
derivatives

Embryo/Case ID SG AG
#1 3 4
#2 3 3
#3 6 6
#4 5 5
#5 2 2
#6 2 3
#7 7 3
#8 6 2
#9 5 6
#10 7 2
#11 2 3
#12 10 12
#13 3

#14 2

#15 " 10
#16 6 3
#17 4 3
#18 3 2
#19 5 5
#20 1 3
#21 5 5
#22 18 10
#23 6 5
#24 4 10
#25 6 0
#26 8 0
#27 6 0
#28 0 4
#29 0 5

Results represent the number of GFP+/TH+ cells per clone present in
sympathetic ganglia (SG), adrenal gland (AG), or in both tissues counted in a
total of 29 labelled clones.

technically demanding technique, with a success rate
in our experiments of only 12%, we preferred EP over
all other available methods, since it lacks the potential
physical damage to the embryo produced by biolistic
gene gun, potential toxic effects of viruses [39], and
does not harm the morphology of the tissue [40].
Notably, in our experiment, a clear GFP signal was
already visible 3.5 h after EP, likely before most
labelled cells underwent mitosis. Consistently, in 71% of
cases, only one cell in the dorsal NT was detected, while
27.5% of cases revealed two cells. In the latter case, either
two cells were originally electroporated, or a single cell
was labelled shortly before undergoing cell division.
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Figure 3 Analysis of GFP-labelled cells derived from a single clone in a sympathetic ganglion (A-C) and adrenal gland (D-F) at E6 using

antibodies to GFP (A,D), TH (B,E), and in situ hybridization for NF-M mRNA (C,F). (G) Distribution of GFP+/TH+/NF+ and GFP+/TH+/NF- cells
in sympathetic ganglia (SG) and adrenal gland (AG) at E6. Scale bars: 50 um. N, notochord: DA, dorsal aorta.

A\

Conclusions

Taken together, our results suggest that sympathetic neur-
onal and chromaffin NC precursors are not pre-specified
at the NT level favouring the option that specification
may occur after delamination. Since neuronal and
chromaffin progenitors can already be distinguished
in their locations prior to populating the final target
sites, sympathetic ganglia and adrenal gland, respectively,
specification must occur during migration from the NT to
the dorsal aorta or early in the peri-aortic area. Underlying
mechanisms need to be investigated.

Methods

Embryos

Fertilized white Leghorn chicken (Gallus gallus) eggs
were from commercial sources (Haas, France). Embryos
were staged according to Hamburger and Hamilton [41].

In ovo manipulations

An expression construct encoding an enhanced version
of GFP, the pCAGGS-AFP (5 pg/ul) [42,43] was
microinjected into the NT at the level of somites 18—24
of 18-24 somite-stage embryos (HH13). Care was taken
to label cells opposite recently segmented epithelial
somites as the dorsal midline area of the NT at this stage
harbours progenitors that mostly generate sympathetic
cells [7,29]. For focal EP of dorsal NT cells, a tungsten
L-shape negative electrode was placed underneath the
blastoderm. The positively charged electrode with the
DNA-filled micropipette was inserted into the lumen of
the NT. DNA at a concentration of 5 pg/uL was injected
into the lumen and the micropipette was lifted up, until
the tip of the micropipette touched the NT (Figure 1A,
[7,29]). Immediately after injection four electrical pulses
of current at a voltage of 60 V for 15 ms were applied at
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100 ms intervals using an ECM°® 830 electroporator
(BTX Harvard Apparatus). Single cell labelling was
achieved when the resistance of the glass micropipette
was 1.8-2.2 MQ (measured after the pulse) using a
Multimeter (Alcron). Embryos were re-incubated for 3.5 h
to monitor initial expression of GFP by inspection under a
stereomicroscope with fluorescent attachment (Zeiss).
Eggs were then re-incubated for an additional 20-24 h
after EP to confirm that the cell had delaminated
from the NT. Successfully electroporated embryos
were then re-incubated until E6.

Embryo processing and sectioning

Embryos were fixed in 4% formaldehyde overnight, washed
twice in PBS, subsequently dehydrated in ascending
concentrations of ethanol and acetone, and embedded in
paraffin (Leica Biosystems). Paraffin blocks were cut into 10
pm thin sections on a microtome (Leica), and sections were
mounted on Superfrost slides (Langenbrinck). Paraffin
sections were deparaffinized and rehydrated before further
processing.

Immunohistochemistry and in situ hybridization
Deparaffinized sections were immunolabelled with
antibodies for GFP and TH combined with in situ
hybridization for NF-M. A non-radioactive in situ
hybridization for chick-specific neurofilament-M (NF-M)
was performed [44]. The riboprobes were diluted 1:10 in
Tris/EDTA-buffer. Detection was performed with an
anti-DIG antibody coupled to alkaline phosphatase and
4-nitroblue tetrazolium chloride/5-bromo-4-chloro-3-
indolyl-phosphate (NBT/BCIP; Roche). Then, sections
were processed for double-immunostaining with antibodies
against TH and GFP. Before applying the primary
antibody, antigen retrieval was performed to uncover
the epitope of the TH antigen. Then, sections were
incubated in blocking solution (0.5% Triton-100, 2%
BSA, 1 x PBS) for 1 h. Next, they were incubated
over night at 4°C with the primary antibodies to GFP
(dilution 1:200; Molecular Probes-Invitrogen), and TH
(dilution 1:400; Chemicon - Milipore). Secondary
antibodies were: Cy3™-568 goat anti-mouse (IgG) for
detection of TH (dilution 1:400; Invitrogen). For
visualization of GFP secondary Biotin-SP-conjugated
Donkey anti-rabbit (IgG) antibody (dilution 1:100; Jackson
ImmunoResearch) was applied for 1 h, then sections were
washed with PBS. After washing, Cy2'™-conjugated
streptavidine (dilution 1:200, Jackson ImmunoResearch)
was applied for 1 h. Nuclei were counterstained with
46’-diamidino-2-phenylindole dichloride (DAPI) (dilution
1:10,000 in 1xPBS, Boehringer). Sections were incu-
bated for 5 min with DAPI, then washed in 1 x PBS
and mounted with fluorescent-covering medium
Fluoromount-G (Southern Biotech).
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Data analysis and statistics

The in ovo-images were taken with a Zeiss camera
equipped with the AxioVision programme, and images
were saved in JPG or TIFF format. If necessary, brightness
and contrast were adjusted to the entire image using
AxioVision and Photoshop 5.0 (AdobeSystems, USA),
merged images were prepared using GIMP 2.0. Analysis
of paraffin sections was performed using a Zeiss Axiophot
microscope. Confocal scanning was performed on 11
embryos, including Z-stacks and orthogonal projections.
A Zeiss confocal microscope with a 364 nm laser, ZEN
2010 software and x63 objective (1.2 W) was used. Within
the NT, a single GFP-labelled cell was apparent in one
transverse section.

To evaluate a common progenitor for chromaffin
cells and sympathetic neurons, as well as neuronal
(NEF-M-positive) or neuroendocrine (NF-M-negative)
cells, the x* test was used. Analysis of cell numbers
in sympathetic ganglia vs. adrenal gland was performed
using the ¢-test (P = 0.5).
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