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Abstract
Background: Existing quantitative models of mouse cerebral cortical development are not fully
constrained by experimental data.

Results: Here, we use simple difference equations to model neural progenitor cell fate decisions,
incorporating intermediate progenitor cells and initially low rates of neural progenitor cell death.
Also, we conduct a sensitivity analysis to investigate possible uncertainty in the fraction of cells that
divide, differentiate, and die at each cell cycle.

Conclusion: We demonstrate that uniformly low-level neural progenitor cell death, as concluded
in previous models, is incompatible with normal mouse cortical development. Levels of neural
progenitor cell death up to and exceeding 50% are compatible with normal cortical development
and may operate to prevent forebrain overgrowth as observed following cell death attenuation, as
occurs in caspase 3-null mutant mice.

Background
Essentially every excitatory neuron in the cerebral cortex is
born from a heterogeneous pool of mitotic cells (referred
to collectively as neural progenitor/precursor cells
(NPCs)) in the embryonic ventricular zone (VZ) [1-4].
During a 'neurogenic interval' in mouse – commencing at
embryonic day (E)10 in the rostro-medial cortex and con-
cluding at E18 in the caudo-lateral cortex [5-7] – the
founding NPC population expands through proliferative
divisions until it is exhausted by terminal differentiation
and programmed cell death (PCD). NPC proliferation
must be balanced with the operation of PCD to produce a
sufficient, but not supernumerary, neuronal population.
Understanding of the cellular and genetic mechanisms
controlling the size of the cerebral cortex, among the most

notable distinctions of the brain's evolution [8,9], could
benefit from an accurate quantitative model of the fate
decisions made by NPCs.

Initial models of mouse NPC fate decisions are insuffi-
ciently constrained because it was assumed that cell divi-
sions outside of the VZ do not contribute cortical neurons
[10]; however, it is now clear that non-VZ mitoses contrib-
ute significant numbers of cortical neurons [11-13]. Ear-
lier models also lacked direct measurement of an
important parameter, the founding NPC population size,
instead relying on two related but less direct measure-
ments [14]: changes in the size of the VZ (from which the
number of NPCs is extrapolated) and the fraction of cells
emigrating from the VZ (from which VZ neuronal output
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is calculated). Direct measurement of the size of the
founding NPC pool [15,16] provides a more accurate
description than extrapolation and addresses a limitation
of early models. These data are employed to constrain
new models as pursued here.

A direct quantitative implication of non-VZ neuronal pro-
duction is that additional PCD will be required to offset
additional neuronal production. Reports of previous
models contend that NPC death is an insignificant com-
ponent of neurodevelopment [17-19] despite empirical
data that are consistent with significant NPC death. Data
supporting much higher levels of NPC death than pro-
posed in prior models were first reported using a sensitive
DNA end-labeling technique, 'in situ end-labeling plus'
(ISEL+), and ligation-mediated PCR [20-24]. Additional
support came from recent analyses of NPC progeny,
marked using a genomically encoded lineage tracer; here,
the progeny clone size was found to diminish markedly at
E14 [25]. Perhaps most compelling, deletion of numerous
pro-cell death genes, including those encoding caspase 3
[26], caspase 9 [27], APAF1 [28], Bax, Bak [29], and Pten
[30], as well as novel molecules like ephrins [31], all lead
to brain overgrowth phenotypes. Conversely and consist-
ently, null mutations in pro-survival genes (for example,
those encoding Bcl-x [32], Survivin [33] and Mcl-1 [34])
lead to smaller brains. Given this large body of empirical

evidence, new models should account for the more exten-
sive operation of PCD during cortical neurogenesis.

Here we report new quantitative models that incorporate
new data and are consistent with cortical PCD empirical
evidence. In particular, with respect to total neuronal pro-
duction, we demonstrate a clear requirement for substan-
tial NPC death during mouse cerebral cortical
development. These models further provide a quantitative
explanation of neurodevelopmental cortical overgrowth
phenotypes produced by PCD attenuation as observed in
caspase 3-null mutant mice.

Results
Simple models of NPC fate decisions require intermediate 
levels of cell death
Using cumulative labeling of newly synthesized DNA and
explicit counting of each labeled cell migrating from the
VZ and subventricular zone, the fraction of terminally dif-
ferentiating cells has been measured experimentally
[14,18]. We denote these fractions qi, where i = 1, 2,..., 11
for the 11 cell cycles (CCs) estimated to occur during the
neurogenic interval (Table 1). These data, qi, and the esti-
mated initial population of NPCs (P0), allow us to deter-
mine, through mathematical modeling, what fractions of
NPC death at each CC, di for I = 1, 2,..., 11, yield VZ output
consistent with experimental counts of the total number
of excitatory neurons in the mature mouse cerebral cortex.

Table 1: Model parameters and constraints

Parameter Symbol Values References

Founding NPC population P0 5 to 6 × 105 [15,16]
NPC CC number i 1 to 11 [6]
Fraction of NPCs that become newly qi q1 = 0.005; q2 = 0.04; [14,37]
post-mitotic neurons q3 = 0.09;q4 = 0.14;

q5 = 0.21;q6 = 0.31;
q7 = 0.42; q8 = 0.54;
q9 = 0.69;q10 = 0.84;
q11 = 1.0

Fraction of NPCs that die at ith CC di 5% to >50% [12,13,17]
After ith CC, number of new:

Post-mitotic cells QI Model specific,
NPCs PI see text
Dying daughter cells DI

Total neurons produced from NPCs 1 × 107 to 2.72 × 107 See text

VZ output
Cortical neurons 10 to 16 × 106 [53,54]
Cortical interneurons 15 to 30% of cortical neurons [20,24,35]
Post-natal cell death 30 to 50% of cortical neurons [20,24,55]
Fraction of IPCs at each CC q'i q'1 = 0; q'2 = 0; q'3 = 0; [10,12,13]

q'4 = 0; q'5 = 0.12;
q'6 = 0.12; q'7 = 0.16;
q'8 = 0.16; q'9 = 0.54;
q'10 = 0.54; q'11 = 0.54

Qi
i

∑
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To this end, we require an estimate for the plausible range
of total VZ neuronal output.

The total number of neurons in the adult mouse cerebral
cortex has been estimated at between 1.0 × 107 and 1.6 ×
107 (Table 1 and references therein), and we use this esti-
mate to constrain simulations of VZ output. Approxi-
mately 15 to 30% of the estimated total neuronal
population consists of inhibitory interneurons. In addi-
tion, the estimate of 1.0 to 1.6 × 107 neurons includes cell
loss that is due to 30 to 50% post-mitotic (non-VZ) cell
death (Table 1 and references therein). Taking these fig-
ures into consideration, we can determine a range for
plausible VZ output as follows. First, a lower bound on VZ
output corresponds to taking the low estimate of 1.0 × 107

neurons and assuming that 30% of these are interneurons
and that there was only 30% post-mitotic death; that is, a
lower bound on VZ output is ((1.0 × 107) × (1 – 0.3))/(1
– 0.3) = 1.0 × 107. Similarly, an upper bound on VZ out-
put follows from taking 1.6 × 107 neurons and assuming
that 15% are interneurons and that 50% post-mitotic cell
death occurred; thus, a plausible upper bound on VZ out-
put is ((1.6 × 107) × (1 – 0.15))/(1 – 0.5)) = 2.72 × 107.

Therefore, data suggest that an accurate quantitative
model of mouse cerebral cortical neurogenesis should
yield a plausible range of VZ output between 1.0 × 107 and
2.72 × 107. However, the published estimate of 140 prog-
eny per founding NPC [18] corresponds to 7.7 × 107 NPC
progeny produced by 5.5 × 105 founding NPCs. NPC
death was presumed negligible when calculating this
progeny-per-NPC estimate and it cannot be reconciled
with the maximum plausible VZ output.

To address this apparent contradiction, we calculated VZ
output at various levels of NPC death using two related
models of daughter cell fate decision-making (Figure
1A,B; Materials and methods). Model DG1 is derived from
the experimental observation that NPC cell death occurs
during the G1 phase of the CC [35], whereas model DG2 is
more similar to existing models [17,18]. In both, the
residual proliferative population before the ithCC,
denoted Pi-1, is doubled at mitosis. In model DG1 (Figure
1A), no cells die prior to cell division while in model DG2,
death is imposed before each division. As a simple conse-
quence, when di is uniformly constant, model DG1 with
founding population P0 is equivalent to model DG1 with
founding population P0/(1-di). Thus, without NPC death
(di = 0 for all i), the same VZ output is calculated for each
model: 8.4 × 107, or 153 progeny per NPC. Assuming di =
0.05 for all i, as measured using the less-sensitive tech-
nique terminal dUTP nick-end labeling (TUNEL) [35], VZ
output for DG1 and DG2 are 5.8 × 107 and 5.5 ×
107respectively, both more than twice the plausible upper
bound on VZ output (2.72 × 107) established above.

Caviness and colleagues [18] calculated that a founding
population of 2.5 × 105 NPCs was compatible with their
model. The plausibility window when P0 = 2.5 × 105

accommodates between 5 and 17% NPC death for model
DG1 and between 4 and 15% NPC death for model DG2
(data not shown). These calculations suggest that a signif-
icant reduction of the founding NPC pool could be con-
sistent with lower levels of cell death during development;
however, this explanation is not consistent with two inde-
pendent measurements of the founding NPC pool size
[15,16].

Our models allow us to view the range of plausible VZ
output as a function of PCD over the course of 11 CCs,
and we refer to this correspondence as the 'plausibility
window.' For example, as shown in Figure 1C,D, a plausi-
ble range of VZ output is observed when 13% <di < 26%
for all i. Because of the delayed depletion of the prolifera-
tive population, the corresponding range of plausible di
values in model DG1 is broader than that calculated using
model DG2 (that is, 15 to 26% versus 13 to 23%, respec-
tively). Neither model DG1 or DG2 matches the experimen-
tal measurements of either 5% NPC death using TUNEL
or 50% NPC death using ISEL+; however, these calcula-
tions do demonstrate that 5% NPC death is too low to cal-
culate VZ output adequately in the normal mouse brain.

Sensitivity analysis of model DG1
Measurements of CC duration together with the fraction
of NPCs that differentiate at experimentally defined ages
permits extrapolation of model parameter qi for each i
[14]. Sensitivity analysis [36] provides a means of deter-
mining the relationship between inherent uncertainty in
these estimates of qi and uncertainty in simulated VZ out-
put.

Using a Monte Carlo approach, we sampled each qi and di

as normally distributed random variables with means 

and  taken from [14,37] and variance given by

 and  (Materials and methods).

For example, for  and ν1 = 0.5 we have qi

~N(0.42, 0.122). Sampling the 22-dimensional parame-
ter space for qi and di, and then computing VZ output for

each sample point in parameter space, allowed us to

determine that ν1 = ν2 = 0.5 gives plausible VZ output for

>90% of the model realizations (Figure 2A).

For ν1 = ν2 = 0.5, we computed the first-order sensitivities

of VZ output to variation in each qi and di (Materials and

methods). The first-order sensitivities  and  are

qi

di

ν1 −( )1 q qi i ν 2 1( )− d di i

q7 0 42= .

Sqi
Sdi
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measures of how uncertainty in each qi and di drives uncer-

tainty in VZ output. For example, when  is close to

zero for a given qi, significant variation in VZ output can

still occur despite fixing this qi. We find that death rates in

the first few CCs and differentiation rates in the middle
CCs can account for the most significant portion of model

variability; yet even the largest  and  are only

approximately 10% (Table 2). As such, variation in VZ
output is hardly attributable to variation in any one qi or

di. An obvious explanation is that, given exponential

growth conditions, outlying values of either qi or di in early

CCs are easily compensated by outliers in later CCs. Inter-
estingly, significant variation in qi and di from the mean

values  and  can still yield plausible VZ output (Fig-

ure 2B).

Intermediate progenitor cells alter the plausibility window
NPC mitoses occur on the ventricular surface, but 'non-
surface' mitoses are also observed in the developing cor-
tex. Initially, these cell divisions were erroneously consid-
ered non-neuronogenic [10], but proliferative
intermediate progenitor cells (IPCs) – daughter cells of
NPCs that have migrated to the subventricular zone and
intermediate zones, and are immunoreactive for the tran-

Sqi

Sqi
Sdi

qi di

Appropriate ventricular zone (VZ) output requires greater than 5% neural progenitor cell (NPC) deathFigure 1
Appropriate ventricular zone (VZ) output requires greater than 5% neural progenitor cell (NPC) death. (A, B) 
Two simple cell decision paradigms are used to identify a plausibility window and calculate viable levels of NPC death. Begin-
ning at 'P' and following the arrows clockwise, in model DG1 (A) the NPC population Pi-1 is doubled at the ith mitosis, then NPC 
death, 'D,' and differentiation, 'Q,' are imposed, so that the P population for the subsequent cell cycle (CC) is given by Pi = 2(1 
- di - qi)Pi-1. (B) In model DG2 dying NPCs are removed from the NPC population prior to doubling the population, and Pi = (1 - 
qi)2(1 - di)Pi-1. (C, D) Model output from P0 = 550,000. VZ output (total Q cells, y-axis) is plotted after 11 CCs when the indi-
cated fraction of NPCs die at each CC (Death, x-axis). The window of plausible VZ output, between 1 × 107 and 2.72 × 107, is 
indicated by dashed lines. (C) Using model DG1, the center of the plausible VZ output range (total Q cells = 1.86 × 107) corre-
sponds to 19% NPC death, as indicated by the solid line that descends from plotted VZ output to the x-axis. (D) Similarly, the 
center of the plausibility window using model DG2 corresponds to 17% NPC death.
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scription factor Tbr2 – are now known to contribute addi-
tional excitatory neurons to the mouse cerebral cortex [11-
13].

To determine how IPCs may affect the level of NPC death
required for plausible VZ output, IPC subpopulation lev-
els were extrapolated from the literature (Table 1 and ref-
erences therein) and these constraints were incorporated
into both models. We take a fraction of the Q cell popula-
tion after the ith division – that is, we denote qi'Qi as the
size of an IPC subpopulation – and these cells undergo an
additional CC, doubling their contribution to the total Q
population (Figure 3A,B). In initial modeling, we assume

that additional IPC CCs and IPC death either do not occur
or at least offset each other, and we include those IPCs
generated after the last NPC CC in the VZ output calcu-
lated for CC11. With the inclusion of IPCs, VZ output
without NPC death increases to 1.1 × 109 in model DG1
and more than doubles to 2.1 × 109 in model DG2 (Figure
3C,D). With 5% NPC death, model DG1 calculates VZ out-
put to be 7.3 × 108 and model DG2 calculates 1.3 × 109

(Figure 3C,D). Since the qi' fraction is largest in the last
three CCs, IPCs have a relatively small effect on the plau-
sibility window; it expands slightly to accommodate 17 to
29% NPC death in model DG1 and 20 to 29% NPC death
in model DG2. Importantly, a larger IPC population (from

Model DG1 is insensitive to perturbations in qi and diFigure 2
Model DG1 is insensitive to perturbations in qi and di. (A) Most (>90%) model realizations give plausible ventricular zone 

(VZ) output (gray bars). The distribution of 10,000 simulations of VZ output (where  = 0.19 for all i) is plotted as a histo-

gram. Simulation outputs follow a log-normal distribution. The solid vertical line indicates the geometric population mean, and 
dashed vertical lines indicate 1 and 2 standard deviations from the mean. (B) Three examples of points in 22-dimensional 
parameter space where plausible VZ output is observed. The q fractions are plotted along a dashed line and d fractions are 
plotted along a solid line. The upper panel is from a bin below the mean, the center panel is from the bin at the mean, and the 
lower panel is from a bin above the mean. CC, cell cycle.

di

Table 2: Representative sensitivity analysis

Cell cycle

1 2 3 4 5 6 7 8 9 10 11

Sqi 0.0007 0.0041 0.0161 0.03 0.055 0.0974 0.065 0.0314 0.0079 0.0012 0.0005
Sdi 0.109 0.1105 0.1144 0.0914 0.0728 0.0629 0.0452 0.0151 0.0038 0.0006 0.0004
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a larger IPC fraction or additional IPC CCs without IPC
death) could increase, but not decrease, the requirement
for NPC death.

Cortical development with 5% NPC death at early CCs
requires more than 50% NPC death at later CCs

A primary objection to the idea of substantial NPC death
is the intuition that ≥ 50% NPC death throughout neu-
rodevelopment would preclude expansion of the NPC
pool. However, the level of NPC death need not be con-
stant at each CC. For example, ISEL+ labels approximately
5% of cells at E10 and the percentage increases signifi-
cantly thereafter [20,35]. Moreover, NPC lineage analyses
using a genomically encoded marker found that clone size
increased during early development but then diminished
after E14 [25], suggesting significant cell death with

corpse elimination at later, but not earlier, CCs. These
empirical observations are also consistent with increased
model sensitivity to the levels of death at earlier CCs
(Table 2). Together, these data suggest that early 'expan-
sion' CCs occur; initially, low PCD levels – for example,
setting di = 0.05 for 1 ≤ i ≤ 4 provides for four expansion
CCs – further constrain VZ output. Here we calculate the
corresponding amount of NPC death required during
later CCs for plausible VZ output.

The fourth neurogenic CC takes place on E12, a time
when significant ISEL+ labeling was observed [20]. VZ
output with three, four, or five expansion CCs amplifies
differences between models DG1 and DG2. In model DG1
with three expansion CCs, the plausibility window per-
mits 21 to 42% NPC death; four expansion CCs permit 26
to 56% NPC death; and five expansion CCs permit 36 to

Intermediate progenitor cells (IPCs) modestly increase the requirement for neural progenitor cell (NPC) deathFigure 3
Intermediate progenitor cells (IPCs) modestly increase the requirement for neural progenitor cell (NPC) 
death. (A, B) IPCs (IP) are incorporated into (A) model DG1 and (B) model DG2 similarly. A fraction of Q cells (q') become 
IPCs, undergo one CC (2 *IP), then re-enter the Q population. (C, D) Ventricular zone (VZ) output plotted as described in 
Figure 1. (C) In model DG1 the plausibility window is centered at 22% NPC death. (D) In model DG2 the plausibility window is 
centered at 24% NPC death.
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Expansion cell cycles permit much more neural progenitor cell (NPC) death at later cell cycles (CCs)Figure 4
Expansion cell cycles permit much more neural progenitor cell (NPC) death at later cell cycles (CCs). Ventricu-
lar zone (VZ) output plotted as described in Figure 1. During expansion CCs, di = 0.05; NPC death during subsequent CCs is 
indicated on the x-axis. (A, B) After three expansion CCs the plausibility window is centered at 29% using model DG1 (A) and 
24% using model DG2 (B). (C, D) After four expansion CCs the plausibility window is centered at 37% using model DG1 (C) 
and 28% using model DG2 (D). (E, F) After five expansion CCs the plausibility window is centered at 53% using model DG1 (E) 
and 36% using model DG2 (F).
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>80% NPC death (Figure 4A,C,E). Using model DG2, the
plausibility window is less broad and accommodates less
NPC death. After three expansion CCs the DG2 plausibility
window permits 17 to 34% NPC death; after four expan-
sion CCs it permits 20 to 41% NPC death; and after five
expansion CCs it permits 25 to 54% NPC death (Figure
4B,D,F).

We note here that inclusion of four or five expansion CCs
makes model DG1 and model DG2 readily distinguishable
from one another. This distinction is a consequence of the
differential involvement of cell death when expansion
CCs begin and end, and illustrates some additional sensi-
tivity to the size of the founding NPC population. As
described above, during the first CC in model DG2 the
founding population is reduced before mitosis; therefore,
for uniformly constant cell death, model DG2 with initial
population P0 is equivalent to model DG1 with initial pop-
ulation d1P0. Although this distinction leads to only subtle
differences in most simulations, when considering the
relationship between expansion CCs and plausible levels
of NPC death, model DG1 with four or five expansion CCs
illustrates additional potential for biological variation.

Early expansion CCs and IPCs together are most com-
patible with experimental data and further support
high levels of NPC death

Both expansion CCs and IPC CCs occur during normal
mouse brain development. When NPC population kinet-
ics include expansion CCs (as shown in Figure 4) and
IPCs (as shown in Figure 3), the plausibility window is
broadest. For model DG1 with IPC CCs, three expansion
CCs permit 26 to 46% NPC death and four permit 32 to
60% NPC death (Figure 5A,C). After five expansion CCs,
VZ output already exceeds the minimum calculated esti-
mate of cortical neurons (data not shown), with = 43%
NPC death required during the remaining CCs to restrain
VZ output (Figure 5E). As above (Figure 3), model DG2
with IPC CCs yields a lower and narrower range of NPC
death levels: 28 to 41% with three expansion CCs, 32 to
49% with four expansion CCs, and 38 to 61% with five
expansion CCs (Figure 5B,D,F).

Discussion
Cell death amongst NPCs is a prominent feature of neuro-
genesis in other regions of the nervous system (for exam-
ple, retina; reviewed in [38,39]); however, the amount of
NPC death during mouse cerebral cortical development is
debated [40,41]. Employing published cell counts to esti-
mate ranges of neuronal population size in the mouse cer-
ebral cortex, we calculated a plausible range of VZ output
for normal mouse neurodevelopment. Models DG1 and
DG2 use simple difference equations to capture essential
features of previous probabilistic models. Model DG1 with

three to five early expansion CCs, a pool of IPCs, and NPC
death near 50% incorporates the most experimentally
observed constraints and is consistent with NPC death
levels as observed in ISEL+ analyses [22,42,43].

Comparison with contemporary models
Apart from initial modeling by Takahashi, Caviness, and
colleagues (referenced throughout), Gohlke, Faustman,
and colleagues [17,44] have used a Kolmogorov forward
equation to compute the probability distribution for
mouse VZ output explicitly, as a continuous-time Markov
chain. In contrast, we estimate this same probability dis-
tribution by repeatedly simulating a deterministic differ-
ence equation with random perturbations taken from
assumed distributions. This allows us to illustrate how sig-
nificant variation in qi and di fractions, over the course of
11 CCs, can occur and still yield plausible VZ output (Fig-
ure 2B). In population measurements using stereological
counting, variation at the level of subpopulations of NPCs
would probably go unnoticed, yet this may be an impor-
tant feature of cerebral cortical development. While such
variation is implicit in the Kolmogorov forward equation
approach, Monte Carlo allows us to view sample trajecto-
ries that illustrate this variation.

The Gohlke models also observe that the original Taka-
hashi models lead to VZ output that exceeds experimental
counts of cortical neurons by at least threefold [44]. How-
ever, these authors use two additional parameters (in
addition to low-level NPC death) to reduce cortical neu-
ron production to plausible levels: a diminished growth
fraction insofar as not all VZ cells are progenitor cells and
a clearance time for dying NPCs. Many NPCs co-label for
bromodeoxyuridine and ISEL+ [20,24,42]; therefore,
Gohlke and colleagues have likely recast some additional
NPC death as a 'diminished' growth fraction. These
parameters have the effect of reducing the proliferative
population from which any given q fraction is taken. Con-
sequently, the overproduction observed using the Taka-
hashi model is limited and plausible levels of VZ output
are obtained from the Gohlke mouse model [17,44].

The Gohlke mouse model is reportedly compatible with
levels of NPC death up to 24% [17]. This value is in good
agreement with 13 to 26% NPC death calculated using
models DG1 and DG2 (Figure 1). Despite this, Gohlke and
colleagues [17,45] report subsequent model analysis
using NPC death rates at or near 0% NPC death. The con-
trasting higher levels of NPC death required in Gohlke
models of primate cortical neurogenesis [45], relative to
murine cortical neurogenesis, may simply reflect an
underestimation of mouse NPC death.
Page 8 of 12
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Constrained models require substantial levels of progenitor cell (NPC) deathFigure 5
Constrained models require substantial levels of progenitor cell (NPC) death. Ventricular zone (VZ) output as plot-
ted in Figure 1, including intermediate progenitor cells (IPCs) as in model DG1 (Figure 3A) and model DG2 (Figure 3B). (A, B) 
After three expansion cell cycles (CCs) the plausibility window is centered at 33% using model DG1 (A) and 33% using model 
DG2 (B). (C, D) After four expansion CCs the plausibility window is centered at 42% using model DG1 (C) and 39% using 
model DG2 (D). (E, F) After five expansion CCs the plausibility window is centered at 59% using model DG1 (E) and 47% using 
model DG2 (F).
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TUNEL underestimates NPC death
A strong implication of all modeling experiments pre-
sented here is that TUNEL significantly underestimates
NPC death during mouse cerebral cortical development.
This reflects technical differences in sensitivity between
the two procedures, with ISEL+ being approximately ten
times more sensitive than the originally reported TUNEL
technique [21,22]. ISEL+ detects more dying cells not only
amongst NPCs, but also in other tissues like the thymus
and small intestinal villus [43]. Consistent with a tenfold
reduced sensitivity relative to ISEL+, TUNEL detects as few
as one-tenth of the dying NPCs (5% versus 50%).

Consideration of the caspase 3-deficient phenotype
In order to reconcile the approximately 5% NPC death
proposed by prior models [18] with the forebrain over-
growth phenotype observed in caspase 3-deficient mice, it
has been proposed that NPC death may occur normally in
a small population of neuroepithelial stem cells or radial
glia at an early age (<E12) [46]. The claim is that addi-
tional survival of a few such cells could underlie forebrain
overgrowth in caspase 3-deficient mice because each of
these individual cells might ultimately give rise to many
neurons (approximately 140 according to estimates from
concurrent models). However, this notion is inconsistent
with experimental data demonstrating marked over-
growth of NPCs in caspase 3-null embryos by E12, before
large numbers of NPC progeny emigrate to the cortex
[26,42].

Our models are consistent with changes in NPC and neu-
ronal populations that have been observed following
experimental attenuation of PCD. For example, a 20%
reduction in NPC death from the midpoint of any plausi-
bility window corresponds to VZ output that exceeds the
upper bound for that plausibility window. This is strik-
ingly consistent with a 30% reduction in ISEL+ labeling of
NPCs observed in caspase 3-deficient mice [42], where
exceptional forebrain overgrowth is observed. We suggest
that an in vivo correlate of 'exceeding the plausibility win-
dow' is forebrain overgrowth.

Predictions derived from observing the plausibility window
The breadth of the plausibility window provides a com-
parative measure of model robustness with respect to via-
ble levels of NPC death. In some scenarios the slope of VZ
output is steep (Figure 1D), and a 10% difference in NPC
death leads to marked differences in VZ output, while a
similar 10% change has little impact on VZ output in
models where the slope is less steep (for example, Figure
4E). Notably, early expansion CCs (Figure 4), rather than
the size of the founding NPC population or additional
IPC progeny (compare Figures 2 and 3), significantly
extend the range of NPC death that is compatible with
plausible VZ output. Although modeled during the first

three to five CCs here because of experimental evidence
for pre-E12 expansion CCs [20,25], transient low-level
NPC death could theoretically operate during any CC. It is
tempting to speculate that high levels of NPC death at
later CCs follow from low levels of NPC death during
early expansion CCs. A similar process has been reported
in embryonic stem cells earlier in development [47,48]
and may be related to a permissive decatenation check-
point observed in NPCs [48].

One might predict that other perturbations leading to
transient high levels of NPC death at early CCs could lead
to low level NPC death at later CCs. In this scenario,
developmental accommodation of atypical NPC death
might occur at the level of stem cell niches [49,50], pro-
viding sufficient, but not necessarily 'normal,' VZ output.
Perhaps local control of NPC death could insulate cere-
bral cortical development against genetic differences and
chemical or environmental insults. Given genetic diversity
among NPCs, produced in part by chromosomal aneu-
ploidy [51] and retrotransposition [52], differences in
NPC death amongst individuals suggests selection and/or
survival mechanisms that influence the mosaic composi-
tion of an individual's cerebral cortex.

Conclusion
Models DG1 and DG2 resolve discrepancies existing
between previous models and experimental data; further-
more, these models provide a quantitative account for
qualitative differences observed during PCD-attenuated
cerebral cortical development. This theoretical framework
should motivate additional experimental investigation of
expansion CCs and reinterpretation of other cortical
development phenotypes that measured PCD among
NPCs using only TUNEL staining.

Materials and methods
The order in which NPC death, differentiation, and prolif-
eration are imposed alters VZ output, so it is natural to
consider two related models. For the first model, DG1, the

number of generated neurons at the ith CC is Qi = 2qiPi-1,

where Pi-1 is given by Pi = (1 - di)(1 - qi)2Pi-1. Here, (1 -

qi)2Pi-1 is the number of non-emigrating daughter cells

after the ith division and di(1 - qi)2Pi-1 of these die, leaving

Pi(1 - di)(1 - qi)2Pi-1 to divide again. Alternatively, impos-

ing death before imposing differentiation gives Qi = qi(1 -

di) 2Pi-1 while, again, Pi(1 - di)(1 - qi)2Pi-1 many NPCs go

through the ith CC. We refer to this model as DG2. In each

of these two related models, the total VZ output over 11

NPC CCs is . Viewing VZ = VZ(q, d) as a

function of all qi and di – that is, q = (qi) and d = (di) are

VZ Qi
i

=
=
∑
1 11,...,
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11-dimensional vectors – allows us to explore how total
VZ output is sensitive to variation in qi and di.

Defining  and  as the mean differentia-

tion and death rates, we generate random values q = (qi)

and d = (di) using a normal distribution. As variances we

use  and  so that when either qi or

di are close to 0 or 1, sampling rarely provides values that

are nonbiological; that is, less than 0 or greater than 1. To

indicate this distribution, we write 

and . Then, following Saltelli et al.

[36], we define first-order sensitivities:

and

where Var [VZ(q, d)] is the variance in VZ output that
arises when all qi and di are randomized (for example,

10,000 runs) and where Var [E[VZ(q, d|qk)]], for example,

is the variance in expected VZ output that arises when, for

some fixed k, all qi with i ≠ k are allowed to vary. That is,

to compute Var [E[VZ(q, d|qk)]], qk is fixed repeatedly

while  for all i ≠ k and

 for all i = 1, 2,..., 11. Then, the

average (expected) VZ output is taken, and this entire
process is repeated (for example, approximately 100
times) to determine the variance of such an average.

Calculations were performed using MatLab version 7.7.0
(Mathworks, Natick, MA, USA) as detailed in the text. Fig-
ures were prepared using Illustrator and Photoshop
(Adobe Systems Inc., San Jose, CA, USA). The MatLab
scripts are available as additional files 1 and 2.

Abbreviations
CC: cell cycle; E: embryonic day; IPC: intermediate pro-
genitor cell; ISEL+: in situ end-labeling plus; NPC: neural
progenitor/precursor cell; PCD: programmed cell death;
TUNEL: terminal dUTP nick-end labeling; VZ: ventricular
zone.
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