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Abstract
Background: Adrenal chromaffin cells and sympathetic neurons both originate from the neural
crest, yet signals that trigger chromaffin development remain elusive. Bone morphogenetic proteins
(BMPs) emanating from the dorsal aorta are important signals for the induction of a
sympathoadrenal catecholaminergic cell fate.

Results: We report here that BMP-4 is also expressed by adrenal cortical cells throughout chick
embryonic development, suggesting a putative role in chromaffin cell development. Moreover,
bone morphogenetic protein receptor IA is expressed by both cortical and chromaffin cells.
Inhibiting BMP-4 with noggin prevents the increase in the number of tyrosine hydroxylase positive
cells in adrenal explants without affecting cell proliferation. Hence, adrenal BMP-4 is likely to induce
tyrosine hydroxylase in sympathoadrenal progenitors. To investigate whether persistent BMP-4
exposure is able to induce chromaffin traits in sympathetic ganglia, we locally grafted BMP-4
overexpressing cells next to sympathetic ganglia. Embryonic day 8 chick sympathetic ganglia, in
addition to principal neurons, contain about 25% chromaffin-like cells. Ectopic BMP-4 did not
increase this proportion, yet numbers and sizes of 'chromaffin' granules were significantly increased.

Conclusion: BMP-4 may serve to promote specific chromaffin traits, but is not sufficient to
convert sympathetic neurons into a chromaffin phenotype.

Background
The neural crest (NC) plays a paradigmatic role for study-
ing the diversification of multipotential progenitor cells
into distinct cell types. Sympathetic neurons and the

endocrine chromaffin cells of the adrenal medulla and
extra-adrenal locations are derived from the NC [1]. Both
cell types share many characteristics – for example, the
synthesizing machinery for noradrenaline (see [2] for a
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review) – but are very distinct in other aspects. It is widely
believed that chromaffin cells and sympathetic neurons
develop from the NC via a common sympathaodrenal
(SA) progenitor, which has the capacity to give rise to both
sympathetic neurons and chromaffin cells. SA progenitors
develop in the trunk region near the dorsal aorta [3-6]. In
this location they acquire catecholaminergic neuronal fea-
tures, and then are supposed to re-migrate to the sites of
the secondary sympathetic ganglia and the adrenal gland.
Chromaffin cell differentiation is believed to involve the
inhibition of terminal neuronal differentiation [7], the
downregulation of neurofilament (NF), lack of neurites,
and the development of large 'chromaffin' dense-core ves-
icles [2,8-11] However, the differential cues determining
either a neuroendocrine or neuronal fate have not been
identified as yet. Tissues surrounding NC cells and SA pro-
genitor cells during their migration and at their final loca-
tions are considered to be important for the induction of
a sympathetic neuronal or chromaffin cell phenotype.

Glucocorticoids secreted by the adrenal cortex have long
been thought to be essential for chromaffin cell differen-
tiation [11-14]; however, analysis of glucocorticoid recep-
tor-deficient mice revealed that their adrenal chromaffin
cells are largely normal [15]. Other factors provided
locally by the adrenal gland, such as transforming growth
factor-β, have been shown to be involved in the regulation
of chromaffin cell proliferation, but not in chromaffin cell
phenotype determination [16].

Bone morphogenetic proteins (BMPs) comprise a family
of growth factors that were first identified according to
their osteogenic properties [17-19]. Subsequently, they
were found to be expressed widely in vertebrate embry-
onic structures and shown to be involved in a variety of
key embryonic processes such as dorsal-ventral axis speci-
fication, epithelio-mesenchymal interactions, and apop-
tosis [20]. BMP-4 and BMP-7 play an important role in the
specification of SA progenitors from the NC in the avian
embryo [3,4,21] and are expressed in the wall of the dor-
sal aorta. Overexpression experiments of BMP4/7 and the
use of noggin, an inhibitor of BMP-4/7, showed that
BMPs are necessary and sufficient for the early induction
of a neuronal and catecholaminergic phenotype in NC
cells that aggregate in the vicinity of the dorsal aorta [3-
5,21].

It has recently been suggested that BMP-4 is required only
transiently for an early step of sympathetic neuron differ-
entiation but may block subsequent steps of terminal neu-
ronal differentiation. This hypothesis was based on the
observation that NC cells that were treated with BMP-4
form ganglion-like clusters and extend neurites only after
withdrawal of BMP-4 [22]. This suggested the possibility
that high and maintained BMP expression may result in

catecholaminergic cells without neuronal properties, that
is, chromaffin cells. We now demonstrate that BMP-4 is
expressed in cortical (interrenal) cells of the developing
chick adrenal gland but is not detectable in sympathetic
ganglia. We provide a detailed analysis of the temporal
and spatial pattern of BMP-4 and BMP receptor (BMPR)
expression in the embryonic chick adrenal gland. We
show that noggin, which inhibits BMP activity, reduces
numbers of catecholaminergic cells in explant cultures of
the adrenal gland. However, our results from BMP-4 over-
expression experiments at the sites of secondary sympa-
thetic ganglia suggest that prolonged exposure of SA cells
to BMP-4 promotes the expression of chromaffin traits
but is not sufficient to alter the proportion of chromaffin-
like cells in the ganglia.

Materials and methods
Experimental animals
Fertilized White Leghorn eggs were incubated in a humid-
ified egg chamber at 38°C until embryonic day (E)3, E4,
E5, E6, E7 or E9. On the indicated day of incubation,
whole embryos were harvested and the stage according to
the criteria of Hamburger and Hamilton [23] was deter-
mined. Embryos were either fixed in 4% paraformalde-
hyde overnight or the adrenal anlagen were dissected for
tissue cultures or RNA-isolation.

Tissue culture
Chinese hamster ovary (CHO) cells producing Xenopus
noggin and dhfr-CHO control cells were a kind gift from
Richard Harland and Dale Frank. Cell lines were grown as
described previously [24]. Supernatant was collected after
a 4-day culture period and was then concentrated 20-fold
using a minicon concentrator (CS 15; Millipore, Schwal-
bach, Germany).

For explant cultures the adrenal anlagen, including the
adjacent mesenchyme, were dissected from stage 23 using
sharpened insect needles. To prepare collagen gels, 5 μl
sodium bicarbonate (5%) was added to 95 μl of rat tail
collagen (90%) in DMEM. The collagen solution was put
into a 3.5 cm diameter petridish (Costar, Schiphol-Rijk,
Netherlands) and adrenal explants were placed on top.
After the gel had polymerized, 4 ml of DMEM medium
(Invitrogen, Gaithersburg, MD, USA) supplemented with
10% foetal calf serum and antibiotics (penicillin, strepto-
mycin, neomycin (PSN); Invitrogen) were added. The
medium contained 1% supernatant of either noggin-pro-
ducing CHO cells or control dhfr-CHO cells. Explant cul-
tures were incubated in a 95% air/5% CO2 atmosphere at
37°C. Every two days 50% of the medium was changed.
The explants were fixed after 1, 3 or 5 days in culture and
processed for electron microscopy or cryoembedding fol-
lowed by immunofluorescence staining or in situ hybridi-
sation (see below). For 5-bromo-2'-deoxy-uridine (BrdU)
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labelling and detection, a BrdU-labelling and Detection
Kit I (Roche; Mannheim, Germany) was used. The BrdU-
labelling solution was prepared according to the manufac-
turer's instructions in culture medium with and without
noggin and added after a culture period of 3 days 1 hour
before fixation.

Histology
To prepare cryosections, paraformaldehyde-fixed tissues
were rinsed three times with phosphate buffer and then
placed in 30% sucrose in phosphate-buffered saline (PBS)
for cryoprotection. Following overnight immersion in
sucrose, the tissue was coated with Tissue TEK® O.C.T™
compound (Sakura Finetek Europe B.V, Zoeterwoude,
Netherlands, frozen on dry-ice and stored at -70°C until
further processing. The tissue was then cut into 12 μm
serial sections, mounted on Superfrost™ slides and air-
dried for 30 minutes before performing in situ hybridisa-
tion or immunfluorescence staining.

Non-radioactive in situ hybridisation on cryosections and
preparation of digoxigenin-labelled probes for chick tyro-
sine hydroxylase (TH), chick achaete scute-homologue 1
(CASH-1) [25] chick Phox2B [26], chick neurofilament-M
[27], chick BMP-4 [28], chick BMPRIA and IB [21], chick
steroidogenic factor 1 (SF-1) and chick Sox10 [4] were car-
ried out using a modification of the protocol of D Hen-
rique (IRFDBU, Oxford, UK) as previously described [29].
Chick SF-1 (base-pairs 509–1,288) was cloned by reverse
transcription (RT)-PCR using a pGEM-T vector system
(Promega, Mannheim, Germany) following the manufac-
turer's instruction.

For TH immunfluorescence-staining, sections were pre-
treated with 10% normal rabbit serum in PBS and 0.1%
Triton X-100, followed by overnight incubation with pol-
yclonal sheep anti-tyrosine hydroxylase antibody (TH,
1:200; Chemicon International, Temecula, CA, USA) at
4°C. Specimens were rinsed in PBS and incubated with a
Cy3™-conjugated rabbit anti-sheep antibody (1:200; Jack-
son Immunoresearch, West Grove, PA, USA) for 2 h at
room temperature. Specimens were then rinsed in PBS,
counterstained with 4',6'-diamidino-2-phenylindole
dihydrochloride (DAPI; 1:1,000) for 10 minutes, and
mounted with Fluorescent Mounting Medium (Dako
Hamburg, Germany).

For TH immunohistochemistry slides were pretreated
with 3% hydrogen peroxide in PBS for 15 minutes. After
incubation with primary antibody as described above, sec-
tions were incubated with a biotinylated rabbit anti-sheep
antibody (1:200; Vector Laboratories Burlingame, CA,
USA), rinsed with PBS and incubated for 1 h with avidin
and biotinylated horseradish-peroxidase-macromolecular
complex (Vector: Elite ABC reagent) according to the

manufacturer's instructions. Sections were then rinsed
with PBS and stained with 3-amino-9-ethylcarbazol (AEC;
Sigma-Aldrich, Taufkirchen, Germany) according to the
manufacturer's instructions. After rinsing with PBS, sec-
tions were mounted with Kaiser's glycerol gelatine
(Merck, Darmstadt, Germany). HNK-1 (CD57) immu-
nolabelling was performed as previously described [30].

RNA isolation and RT-PCR
RT-PCR was used to determine the expression of BMP-4
mRNA in adrenal anlagen explant cultures. Total RNA was
isolated from tissues using Trizol (Life Technologies, Karl-
sruhe, Germany) according to the manufacturer's guide-
lines for extraction of RNA from small amounts of tissue.
Before reverse transcription samples were digested with
DNase (Roche) for 15 minutes at 37°C followed by inac-
tivation at 70°C for 5 minutes. First-strand cDNA was syn-
thesized in a final volume of 25 μl. Reaction mixtures
consisted of 1 μg of total RNA and final concentrations of
1× first strand buffer (1× first-strand buffer (New England
Biolabs, Frankurt, Germany): 50 mM Tris-HCl, pH 8.3, 75
mM KCl, 5 mM MgCl2 (Biolabs), 10 mM dithiothreitol
(DTT)) and 1 mM each of dNTPs (Biolabs), 50 ng/μl
oligo-dT primer 18 (Biolabs), 1 U/μl RNase inhibitor
(Roche), and 20 U/μl Moloney murine leukemia virus
reverse transcriptase (Biolabs). Before adding buffer,
dNTPs, and reverse transcriptase, the reaction mixture was
heated to 75°C for 10 minutes. After adding the final
components, incubation at 37°C for 2 h followed.
Finally, the reaction mixture was heated for 10 minutes at
65°C. Negative controls were carried out by omitting the
reverse transcriptase.

Following reverse transcription, PCR amplification of the
cDNA was carried out using specific primers for chick
BMP-4 (5'AGGAGCTTCCACCATGAAGA3' and
5'CGGCTAATCCTGACGTGTTT3'; 413 bp PCR product)
and chick GAPDH (5'GTCAACGGATTTGGCCGTAT3' and
5'AATGCCAAAGTTGTCATGGATG3'; 489 bp PCR prod-
uct). Reactions were performed in an Eppendorf Mastercy-
cler Gradient thermocycler. (Eppendorf, Hamburg,
Germany) Reagents were assembled in a final volume of
50 μl with 1 μl of first-strand cDNA, 1 μM forward primer,
1 μM reverse primer, 1× PCR buffer (10× PCR buffer: 200
mM Tris-HCl, pH 9.0, and 500 mM KCl (Promega, Man-
nheim, Germany), 2.5 mM MgCl2, and 0.1 mM each of
dNTPs, Taq DNA polymerase (0.5 μl, 2.5 U; Promega)
and RNase-free water to 50 μl. cDNAs were amplified for
30 cycles. One round of amplification consisted of 45 s at
94°C, 45 s at 57.3°C, and 1 minute at 72°C. PCR reac-
tions (12.5 μl) were run on agarose gels (Life Technolo-
gies, Karlsruhe, Germany) in 1× TAE buffer (0.04 M Tris-
acetate and 0.001 M EDTA), and reaction products were
visualized after soaking gels in 0.5 μg/ml ethidium bro-
mide solution in distilled water for 10 minutes, with a
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transilluminator (Intas, Göttingen, Germany). Pictures
were taken by a computer-assisted gel documentation sys-
tem (Intas).

Overexpression of BMP-4 at the site of developing 
secondary sympathetic ganglia
Infections of chick embryos with RCAS-BMP-4 viruses and
control RCAS viruses were performed as described by
Reissmann et al. [3]. Embryos were implanted with
infected fibroblasts at day 2 at the level of the wing bud,
fixed at day 8, and staged as described above. Tissues were
kryo-embedded, cut into 12 μm transverse serial sections
and then processed for neurofilament-M in situ hybridisa-
tion followed by TH immunohistochemistry as described
above. Numbers of TH-positive/NF-positive and TH-posi-
tive/NF-negative cells in sympathetic ganglia were deter-
mined in every fifth section. The analyzed region extended
from the superior thoracic aperture 1.5 mm into the cau-
dal direction. This region was infected by the RCAS virus
in all experimental embryos as shown by in situ hybridisa-
tion for RCAS-RT.

Electron microscopy
For electron microscopy, tissue was fixed by immersion in
a mixture of glutaraldehyde (1.5%) and paraformalde-
hyde (1.5%) in phosphate buffer at pH 7.3 for 48 h and
rinsed several times with cacodylate buffer (0.1 M).
Organs were then post-fixed in 1% OsO4/1.5% potassium
hexacyanoferrate, rinsed in 0.1 M cacodylate buffer and
0.2 M sodium maleate buffer (pH 6.0) and block-stained
with 1% uranyl acetate. Following dehydration through
increasing concentrations of ethanol, the tissue was Epon-
embedded. Ultrathin sections (50 nm) were examined
with a Zeiss EM10.

For counts and measurements of 'chromaffin' granules in
secondary sympathetic ganglia, serial ultrathin sections
(50 nm) were photographed, digitalized, and stored on a
personal computer. The subsequent analysis was per-
formed by an experimenter blinded to the treatment and
stage by coding the images. The coded images were ana-
lyzed using the software ImageTool 3.0 (University of
Texas, Health Science Center, San Antonio, USA). The first
image that was analyzed was randomly selected (one of
the first three images) and starting with that image, every
fourth image was analysed.

Two different parameters were analyzed: total numbers of
granules within the image; and the mean surface area of
large granules. The total numbers of granules were deter-
mined by using the 'count and tag' plug-in of ImageTool.
Total numbers were determined in material derived from
stages 31, 32 and 33 (with and without BMP-4 treatment).
The data are presented as mean numbers of granules (±
standard error of the mean). Using the same images, the

mean surface areas of large granule profiles were calcu-
lated. Large granules were defined as granules with a pro-
file area bigger than 0.01 μm2. Each granule meeting this
criterion was measured using ImageTool. The data are pre-
sented as mean profile area (± standard error of the
mean).

Statistical analysis
For statistical evaluation, a one-way ANOVA, followed by
post-hoc test (Newman-Keuls Multiple Comparison test)
was performed using GraphPad Prism (GraphPad Soft-
ware, San Diego, CA, USA).

Results
BMP-4 is expressed in adrenal cortical cells during 
embryonic development
We first conducted an in situ hybridisation study to reveal
putative sites of BMP-4 mRNA expression in the develop-
ing adrenal gland and para-adrenal region. At S21, the ear-
liest stage the adrenal cortex could be identified, BMP-4
mRNA was expressed in the wall of the dorsal aorta and at
a site corresponding to the region of the developing adre-
nal cortex, as identified by expression of the adrenocorti-
cal marker SF-1 [31] in adjacent sections (Figure 1A,B). In
close apposition to the medial surface of the adrenal anla-
gen (Figure 1C,D), a group of cells expressing the early
autonomic markers CASH-1 and Phox2B [25,32-35] is
seen. These cells did not express TH (Figure 1E) or NF
(Figure 1F), in contrast to the dorsal cell population,
which represents developing sympathetic ganglia (sg). At
this early stage of development, cells that express CASH-1,
Phox2B, TH, or NF could not be detected inside the adre-
nal anlagen.

We next studied adrenal BMP-4 and SF-1 expression at
stages 23 through 35 (Figure 2B,F,J,N for BMP-4; Figure
2A,E,I,M for SF-1). Adjacent sections were used for the
detection of Phox2B and TH mRNAs (Figure 2C,G,K,O for
Phox2B; Figure 2D,H,L,P for TH). At stage 23 (Figure
2C,D), Phox2B and TH mRNA-positive cells were still
located outside, but closely apposed to the adrenal anla-
gen. Starting at stage 26, cells of the adrenal anlage
expressing SF-1 and cells expressing Phox2b and TH
mRNA became intermingled (Figure 2D,G). BMP-4 was
broadly expressed in the mesenchyme ventral to the dor-
sal aorta, including the area where the adrenal anlage
develops. BMP-4 expression became restricted to interre-
nal cells between stage 26 and 30 and was expressed by
adrenal cortical cells until at least E15 (not shown), the
oldest developmental age studied. During all stages inves-
tigated, BMP-4 expression was also maintained in the wall
of the dorsal aorta (Figure 2B,F,J,N) and cardinal veins
(not shown), that is, in locations where extra-adrenal
chromaffin cells develop. In contrast, sites of the second-
ary sympathetic ganglia failed to reveal expression of
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Transverse sections through a stage 21 (E3.5) chick embryo at the level of the developing adrenal glandFigure 1
Transverse sections through a stage 21 (E3.5) chick embryo at the level of the developing adrenal gland. (A,B) 
Steroidogenic factor-1 (SF-1) mRNA (A), a marker for adrenal cortical tissue, is expressed at a location corresponding to the 
site of bone morphogenetic protein-4 (BMP-4) mRNA expression (B). (C-F) A cluster of cells that express the autonomic 
markers chick achaete-scute homologue (CASH-1, C) and Phox2B (D), but lack tyrosine hydroxylase (TH) (E) and neurofila-
ment (NF) (F), are located in close proximity to the adrenal cortical anlage. Note that cells at a dorsolateral position of the 
dorsal aorta, corresponding to developing secondary sympathetic ganglia, express TH and NF. ac, adrenal cortical anlagen; da, 
dorsal aorta; sg, sympathetic ganglion. Bar: 100 μm.
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BMP-4 (compare Figure 2F and 2G). Together, these data
show that BMP-4 mRNA was expressed early and persisted
in those locations where adrenal and extra-adrenal chro-
maffin cells develop, while BMP-4 mRNA was undetecta-
ble at sites of secondary paravertebral sympathetic
ganglia. The restriction of BMP-4 expression to interrenal
but not chromaffin cells is demonstrated by double label-
ling for TH mRNA (red) and BMP-4 mRNA (blue) shown
in Figure 3.

BMP-receptors are expressed in chromaffin cells of the 
developing adrenal gland
The responses to BMP family members are mediated by
heterotetrameric complexes composed of type II receptors
in concert with type I receptors of either class A or B,
which preferentially transduce signalling by BMP2/4 or
BMP7, respectively [36]. To begin examining the signifi-
cance of persistent BMP expression in sites where chroma-
ffin cells develop, we first analyzed the expression of
BMPRs 1A and 1B. At E4 and E5, BMPR1A was expressed,
inter alia, in a few HNK-1-positive sympathoadrenal cells
located next to the dorsal aorta (not shown). From E6 till

Expression of bone morphogenetic protein-4 (BMP-4) in adrenal cortical cells at developmental stages S23 (B), S26 (F), S30 (J), and S35 (N)Figure 2
Expression of bone morphogenetic protein-4 (BMP-4) in adrenal cortical cells at developmental stages S23 
(B), S26 (F), S30 (J), and S35 (N). Adjacent sections were labelled for steroidogenic factor-1 (SF-1) (A,E,I,M), Phox2B 
(C,G,K,O) and tyrosine hydroxylase (TH) mRNA (D,H,L,P). The positions of the adrenal cortical anlagen (ac) or the adrenal 
gland (ag) are marked. (A-D) At S23, the TH/Phox2B-positive chromaffin progenitors are located outside, but closely attached 
to the adrenal cortical anlage. (E-H) At S26 they have started to invade the adrenal cortical anlage. (I-L) At S30 both cortical 
and TH-positive chromaffin cells are completely intermingled. da, dorsal aorta; sg, sympathetic ganglion. Bar: 100 μm.
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E9 significant expression of receptor transcripts was
detected both in TH-positive and in HNK-labelled crest
derivatives in the adrenal gland (Figure 4A–H). Addition-
ally, BMPR1A mRNA was also expressed in HNK-negative
cells within the gland, the latter probably representing
cortical cells (Figure 4H). In contrast, BMPR1B was not
found in NC derivatives at any age tested (E4-9), but was
strongly expressed in cells with the typical epitheloid mor-
phology of adrenal cortical cells. These results were fur-
ther confirmed by double staining for receptor types and
TH immunoreactivity. At E7, TH-positive chromaffin cells
were intermixed among BMPR1B-positive cells but did
not produce this receptor (Figure 4I–L). In contrast, both
TH-positive chromaffin cells and TH-negative cortical
cells were positive for BMPR1A (Figure 4A–D). Hence,
both receptor types were expressed in cortical cells of the
adrenal gland, but only BMPR1A was synthesized by the
chromaffin progenitors.

Numbers of TH-positive cells in adrenal explant cultures 
are reduced by noggin-treatment
Expression of BMP-4 in the adrenal cortical anlagen and
concomitant expression of BMPR mRNA in adrenal chro-
maffin progenitor cells suggested a putative function of

BMP-4 in chromaffin cell development. Noggin, a
secreted inhibitor of BMP-4/7 [37], provides a useful tool
for neutralizing BMP-4/7 in vivo or in vitro, and thereby
interfering with BMP signalling. To examine the possible
involvement of BMP signalling in chromaffin cell devel-
opment, explants of the adrenal anlagen from S23 chick
embryos were prepared and treated with noggin. Explants
contained the cortical area and adjacent TH-positive and
TH-negative SA progenitor cells, which had not yet colo-
nized the cortex by the time of excision (Figure 2A–D).

We first confirmed by RT-PCR that BMP-4 expression is
maintained in the adrenal explant cultures. Figure 5
shows that the level of BMP-4 mRNA in the adrenal
explants after 4 days in vitro is comparable to the amounts
of BMP-4 mRNA in vivo at the corresponding age.

We next studied the expression of markers specific for
adrenal cortical and medullary cells in more detail using
antisense and sense riboprobes for SF-1, BMP-4, CASH-1,
Phox2B, TH, and NF. All these markers could be detected
in the adrenal explants, reflecting a bona fide in vivo situa-
tion. In addition, cells with the typical ultrastructural fea-
tures of chromaffin cells and sympathetic neurons could
be identified by electron microscopy (not shown).

Following the application of noggin for 3 days, no quali-
tative changes in the expression of these markers or
changes in the ultrastructure of cells could be seen. How-
ever, noggin treatment prevented the increase in numbers
of TH-immunoreactive cells after 3 and 5 days compared
to control explants (Figure 6). Together, these data indi-
cate that BMP-4 signalling in the adrenal anlagen affects
numbers of TH-positive progenitor cells. BrdU/TH dou-
ble-labelling experiments did not reveal differences
between noggin-treated and control explants (Figure 7A),
indicating that noggin does not impair the proliferation of
TH positive cells. The ratio of Sox10 mRNA-positive cells
to TH mRNA-positive cells was almost twice as high in
noggin-treated explants as in control explants (Figure 7B).
This suggests that the effect of noggin is unlikely to be due
to impairment of proliferation or survival of the Sox10-
positive neural crest cells that are the progenitors of the
TH-positive SA cells.

BMP-4 overexpression at the site of developing 
sympathetic ganglia promotes chromaffin cell 
differentiation, but is not sufficient to induce a 
sympathetic neuronal to chromaffin cell shift
The continuous expression of BMP-4 in the adrenal cortex
and the lack of BMP-4 expression at the site of secondary
paravertebral sympathetic ganglia prompted us to investi-
gate whether prolonged expression of BMP-4 is the deci-
sive cue for the differentiation of SA progenitors into
chromaffin cells as opposed to sympathetic neurons. To

Double in situ hybrization for bone morphogenetic protein-4 (BMP-4; blue) and tyrosine hydroxylase (TH; red) on a sec-tion of the adrenal gland of a developmental stage S35 (embryonic day 9) chick embryoFigure 3
Double in situ hybrization for bone morphogenetic 
protein-4 (BMP-4; blue) and tyrosine hydroxylase 
(TH; red) on a section of the adrenal gland of a devel-
opmental stage S35 (embryonic day 9) chick embryo. 
Note that BMP-4 is expressed in the adrenal cortical (inter-
renal) cells surrounding the TH-positive adrenal chromaffin 
cells. Bar: 100 μm.
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test this hypothesis, we overexpressed BMP-4 by implant-
ing fibroblasts infected with a replication competent
RCAS-BMP-4 virus [3]. All infected embryos analyzed at
E8 showed massive deformations of vertebral bones and
the spinal cord in the infected region, suggesting a bona
fide effect of overexpressed BMP-4. To analyze a putative
shift from a sympathetic neuronal towards a chromaffin
cell fate, we determined the numbers of NF-positive/TH-
positive cells and NF-negative/TH-positive cells in the par-
avertebral sympathetic ganglia of the BMP-4 infected
region. NF is a marker for sympathetic neurons, but is
absent in mature chromaffin cells [38,39] (Figure 8B).
However, numbers of NF-negative/TH-positive cells
expressed as a percentage of the total number of TH-posi-
tive cells were virtually identical in chick embryos treated
with BMP-RCAS (26.8 ± 2.9%) and control RCAS virus

(25.3 ± 4.5%), respectively. This result indicates that pro-
longed expression of BMP-4 is not sufficient to induce a
chromaffin cell fate in SA progenitors.

Ultrastructure of sympathetic ganglia upon BMP-4 overexpression
To gain further insight into a putative role of BMP signal-
ling in the phenotypic differentiation of chromaffin pro-
genitors, we next analysed the ultrastructure of
paravertebral sympathetic ganglia in BMP-RCAS and
mock-infected embryos. Chromaffin and chromaffin pro-
genitor cells can be reliably identified by their large (up to
250 nm in diameter) 'chromaffin' granules (Figure 9C–E),
which are absent from sympathetic neurons [35] (Figure
9A,B). As shown in Figure 8, cells with large 'chromaffin'
granules were found in paravertebral sympathetic ganglia
of both BMP-RACS (Figure 9D) and mock-infected (Fig-

In situ hybridisations for bone morphogenetic protein receptor (BMPR)1A (A,B,D,E,F,H) and BMPR1B (I,J,L) in developing chick adrenal glands at embryonic day (E)7 (A-D,I-L) and E9 (E-H)Figure 4
In situ hybridisations for bone morphogenetic protein receptor (BMPR)1A (A,B,D,E,F,H) and BMPR1B (I,J,L) 
in developing chick adrenal glands at embryonic day (E)7 (A-D,I-L) and E9 (E-H). Neural crest-derived (chromaffin) 
cells have been labelled with HNK-1 (CD57, G,H merge) or tyrosine hydroxylase (TH) (C,D merge; K,L merge). Note that 
BMPR1A is expressed in both adrenal chromaffin and interrenal (cortical) cells (A-H) while BMPR1B is expressed only by inter-
renal cells (I-L). ag, adrenal gland; da, dorsal aorta; no, notochord. Bar: 175 μm.
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ure 9C) embryos. Most of these cells were located in the
periphery of the ganglia, similar to the location of the TH-
positive/NF-negative cells shown in Figure 8A,C.
Although these granules were more numerous (Figure
10A) and larger (Figure 10B) in sympathetic ganglia of
BMP-treated than in control embryos, the granule-con-
taining 'chromaffin-like' cells in sympathetic ganglia
could clearly be distinguished from chromaffin cells in E8

adrenal glands. Figure 9E clearly documents the densities
and larger sizes of chromaffin granules in an E8 adrenal
gland as compared to 'chromaffin-like' cells in BMP-
treated sympathetic ganglia (Figure 8D). Together, both
the light microscopic and ultrastructural analyses do sug-
gest that BMP-4 promotes chromaffin differentiation, but
is unable to induce a shift of sympathetic neurons into
chromaffin cells.

RT-PCRs for bone morphogenetic protein-4 (BMP-4; upper panel) of adrenal explant cultures of a developmental stage S23 chick embryo after 4 days in vitro (lane a)Figure 5
RT-PCRs for bone morphogenetic protein-4 (BMP-4; 
upper panel) of adrenal explant cultures of a develop-
mental stage S23 chick embryo after 4 days in vitro 
(lane a). Levels of BMP-4 mRNA are comparable to those in 
vivo at S23 (lane b) and S32 (lane c). RT-PCRs of GAPDH 
(lower panel) were run in parallel.

Quantification of tyrosine hydroxylase (TH)-immunoreac-tive cells in adrenal explant cultures after 0, 1, 3, and 5 days in vitro with or without noggin-treatmentFigure 6
Quantification of tyrosine hydroxylase (TH)-immu-
noreactive cells in adrenal explant cultures after 0, 1, 
3, and 5 days in vitro with or without noggin-treat-
ment. Numbers of TH-positive cells in explants treated with 
noggin failed to increase, in contrast to those in control cul-
tures. Counts of TH-immunoreactive cells were performed 
in every sixth section of the adrenal explant cultures. Data 
are presented as means ± standard error of the mean. At 
least seven explants for each group were analyzed.
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Discussion
The molecular bases of chromaffin progenitor specifica-
tion are still enigmatic. A classic model had postulated a
common progenitor cell for sympathetic neurons and
neuroendocrine chromaffin cells (the SA progenitor), and
a crucial role for glucocorticoids in blocking neuronal and
promoting neuroendocrine differentiation [7,11,12,40].
Analysis of the glucocorticoid receptor knockout [15,41]
failed to support this hypothesis: glucocorticoid receptor-
deficient mice had normal numbers of adrenal chromaf-
fin cells, which resembled their wild-type counterparts in
virtually all structural and chemical aspects.

In our search for alternative cues, we report in this study
that adrenal cortical cells (interrenal cells in the chick)
express BMP-4 starting at the beginning of cortical cell
assembly. At early stages, BMP-4 mRNA is detected in the
wall of the dorsal aorta and in adjacent tissues, particu-
larly those extending ventrally and laterally. These regions

include the developing adrenal cortical cells expressing
the orphan nuclear receptor SF-1. In addition, they engulf
the area lateral to the aorta where NC-derived cells are
found and adrenal chromaffin cells differentiate. With
ongoing development, BMP-4 expression outside the wall
of the aorta becomes restricted to adrenal cortical cells,
which by then intermingle with the differentiating adre-
nal chromaffin cells to form the chick adrenal gland.
BMP-4 is continuously expressed by cortical cells at least
until E15. Thus, throughout this developmental period,
differentiating chromaffin cells are surrounded by cells
with high BMP-4 expression. This differs from the situa-
tion encountered by the cells destined to form secondary
sympathetic ganglia. At their initial differentiation site,
the primary sympathetic ganglia, the wall of the dorsal
aorta is the major source of BMP-4. On the migration
route from primary to secondary sympathetic ganglia,
BMP-4 expression is hardly detectable. In secondary sym-
pathetic ganglia, BMP expression is detectable by RT-PCR
[42] (K. Tsarovina and H Rohrer, unpublished), yet barely
detectable by in situ hybridisation (present study; UE
unpublished observations). Taken together, BMP-4
expression levels differ dramatically between sites of adre-
nal gland and secondary sympathetic ganglion formation,
provoking the question of whether continuously elevated
BMP-4 levels constitute a molecular cue required for chro-
maffin cell differentiation and counteracting neuronal dif-
ferentiation.

BMPs have been firmly established in their role in the
development of autonomic sympathetic and parasympa-
thetic neurons (see [6,43,44] for reviews). BMPs synthe-
sized by cells in the wall of the dorsal aorta trigger the
initial development of NC cells towards noradrenergic
sympathetic neurons [3-5]. BMPs induce expression of the
transcription factors MASH1, Phox2a/b, HAND2, and
Gata2/3 [3,45,46]. Overexpression of BMP-4 [3,22] and
BMP depletion by noggin [4] demonstrates that BMPs are
sufficient and necessary to induce the expression of the
enzymes of noradrenalin biosynthesis, TH and dopamine
β-hydroxylase (DBH), and the neuronal markers neurofil-
ament-L, SCG10, neurexin I, and synaptotagmin I in NC-
derived precursors. Thus, the available data suggest that
BMPs are the decisive stimulus triggering a network of
transcription factors necessary for the differentiation of
NC cells into noradrenergic sympathetic neurons.

The observation that withdrawal of BMP-4 after a short
period in NC cell cultures promotes the formation of gan-
glion-like aggregates of cells extending neurites and
expressing TH, neurexin 1, and synaptotagmin I [22] sup-
ports the idea that short exposure to BMP suffices to
induce noradrenergic and neuronal differentiation. To
test whether prolonged BMP availability suppresses neu-
ronal properties in vivo, the effect of virus-mediated over-

In situ hybridisation for neurofilament (blue) combined with tyrosine hydroxylase (TH)-immunocytochemistry (red) on sections of sympathetic ganglia at the upper thoracic level (A,B) and of the adrenal gland (C) of embryonic day (E)8 chick embryosFigure 8
In situ hybridisation for neurofilament (blue) com-
bined with tyrosine hydroxylase (TH)-immunocyto-
chemistry (red) on sections of sympathetic ganglia at 
the upper thoracic level (A,B) and of the adrenal 
gland (C) of embryonic day (E)8 chick embryos: (A,C) 
control embryo; (B) embryo that was transplanted with bone 
morphogenetic protein-4 (BMP-4)-expressing fibroblasts at 
E2. Note that the majority of cells in the sympathetic ganglia 
of both control and BMP-4-overexpressing embryos is neu-
rofilament-positive, while in the adrenal gland most cells are 
TH-positive, but neurofilament-negative. (D) The percentage 
of TH-positive neurofilament-negative cells was not altered 
in BMP-4-overexpressing embryos. Bars: 100 μm.
Page 10 of 15
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(A-E) Electron micrographs of sympathetic ganglia at the upper thoracic level (A-D) and of the adrenal gland (E) of embryonic day (E)8 chick embryos: (A,C,E) control embryo; (B,D) embryo that was transplanted with bone morphogenetic protein-4 (BMP-4)-expressing fibroblasts at E2Figure 9
(A-E) Electron micrographs of sympathetic ganglia at the upper thoracic level (A-D) and of the adrenal gland 
(E) of embryonic day (E)8 chick embryos: (A,C,E) control embryo; (B,D) embryo that was transplanted with 
bone morphogenetic protein-4 (BMP-4)-expressing fibroblasts at E2. Note that two major types of sympathoadrenal 
cells exist in sympathetic ganglia of both control and BMP-4 overexpressing embryos: cells without or with small granules in 
the cell body (A,B), and cells with large granules (C,D). Bar: 2 μm.
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Numbers and area profiles of 'chromaffin' granules of cells in sympathetic gangliaFigure 10
Numbers and area profiles of 'chromaffin' granules of cells in sympathetic ganglia. (A) The number of granules in 
the sympathetic ganglia was significantly enhanced in the group of the bone morphogenetic protein-4 (BMP-4)-treated embryos 
at stage 33. The data are presented as mean numbers of granules (± standard error of the mean). (B) BMP-4 treatment 
increased the mean profile area of 'chromaffin' granules in the sympathetic ganglia of stage 32 and 33 embryos. The data are 
presented as mean profile area (± standard error of the mean).*p ≤ 0.05; **p ≤ 0.01.
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expression of BMP-4 at sites of sympathetic ganglion
formation was analyzed. The expression of the neuronal
marker neurofilament-M mRNA in sympathetic neurons,
which is barely detectable in chick chromaffin cells
throughout embryonic development ([38] and this
study), appears unaltered in ganglia at sites of BMP-4
overexpression (this study). The grafted BMP-4-secreting
cells were clearly biologically effective, as judged by the
massive local overproduction of cartilage, alterations in
spinal cord patterning and structure of the dorsal aorta.
There are several possible explanations for the failure of
BMP-4 to ectopically increase numbers of chromaffin
cells, beyond the possibility that high levels of BMP-4 may
not specifically induce a chromaffin phenotype. Thus,
BMP-4 may not have the capacity to convert committed
sympathetic neuronal into chromaffin progenitors, at
least not in the given cellular and molecular context. Or
chromaffin cells might have been generated, but did not
survive.

Even so, BMP-4 distinctly promoted differentiation of
chromaffin properties in the sympathetic ganglia, as
judged by the increase in the number and size of chroma-
ffin granules. In sympathetic ganglia of chick embryos at
E6-9, two cell populations with differently sized granules
are present [47,48]. A growing population of cells shows
scarce dense core vesicles with approximate diameters of
100 nm while a transient population of cells, which is pre-
dominantly located in upper lumbar sympathetic ganglia
[48] and was not found in the upper thoracic ganglia ana-
lysed in the present study, shows larger granules of up to
300 nm in diameter. It is not clear which of the cell pop-
ulations is affected by BMP-4 overexpression, and it is cur-
rently not clear whether neurofilament-M expression
differs between the two populations. One possibility is an
effect of BMP-4 on granule size in sympathetic neuron
precursors while neurofilament-M expression levels
remain refractory. Alternatively, cells with larger granules
that may show low neuronal marker expression similar to
chromaffin cell precursors may respond with an increase
in granule size to BMP treatment. The growing evidence of
an early divergence between sympathetic neuron and
adrenal chromaffin cell precursors may support the latter
scenario.

Several lines of evidence argue for both similarities and
differences in the signalling networks involved in the gen-
eration of sympathetic neurons and chromaffin cells (see
[35] for a review). An initial study analyzing the SA cell
lineage in mice lacking MASH1 reported that the neuronal
progeny of the SA lineage was largely eliminated, whereas
adrenal chromaffin cells were hardly affected [32]. Our re-
analysis of the MASH1 knockout revealed that MASH1
was required for orchestrating the normal differentiation
program of a majority, but not all, chromaffin cells [49].

Similar to the MASH1 knockout, our analysis of Phox2B-
/- mice provided evidence that chromaffin cells are appar-
ently distinctly different from sympathetic neurons in
their requirement for Phox2B [50]. Recently, it has been
shown that the zinc-finger factor Insm1 (IA1) is expressed
early during SA development and that a null mutation of
Insm1 affects the development of chromaffin cells and
sympathetic neurons differentially [51]. Thus, these anal-
yses of MASH1, Phox2B and Insm1 deficient mice suggest
that the SA progenies populating sympathetic ganglia and
adrenal glands are not identical with regard to their
requirements for these transcription factors. The distinct
requirements may reflect distinct origins and distinct
characters of SA progenitors, and/or differences in the cel-
lular/molecular environments of sympathetic ganglia and
the adrenal gland, respectively. Similar to mice, in the
chick embryo differences between sympathetic neuron
and adrenal chromaffin precursors have been noted from
the earliest stages of differentiation [38]. The presence of
neuron-like cells with high neurofilament-L expression
levels in adrenal tissue throughout development [38] and
the presence of chromaffin-like cells with low neurofila-
ment-M expression in sympathetic ganglia (this study)
suggest an early diversification of lineages that cannot be
overcome by differences in the environment.

What, then, is the function of BMP-4 in the adrenal gland?
Our experiments applying noggin for 3 or 5 days to adre-
nal explants isolated at S23 strongly suggest that adrenal
BMP-4 augments numbers of TH-positive cells, and does
so by inducing TH in TH-negative SA progenitors rather
than by stimulating proliferation monitored by BrdU
incorporation. The notion that adrenal BMP-4 induces TH
in SA progenitors that are still TH-negative at the time of
their migration into the adrenal anlagen is also supported
by our observation that a substantial number of SA pro-
genitors, which are Sox10-, MASH1- and/or Phox2B-posi-
tive, but TH-negative, can be found in the vicinity and
inside the chick (S23) and E12.5 mouse adrenal anlage
[38,45]. Thus, adrenal BMP-4 would serve a similar role as
BMP-4 secreted from the dorsal aorta, that is, to induce
NC cells to become SA progenitor cells. It is also conceiv-
able that adrenal cortical BMP-4 may act in an autocrine
fashion on BMPR-bearing cortical cells in functions that
remain to be elucidated.

Conclusion
Our study has revealed adrenal cortical cells as a site of
BMP-4 synthesis. Adrenal BMP-4 probably serves to
induce SA-specific transcription factors and TH in cells
that colonize the adrenal anlage in a very immature state.

Abbreviations
BMP: bone morphogenetic protein; BMPR: BMP receptor;
BrdU: 5-bromo-2'-deoxy-uridine; CHO: Chinese hamster
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