
REVIEW Open Access

Homeostatic plasticity in neural
development
Nai-Wen Tien1,2* and Daniel Kerschensteiner1,3,4,5*

Abstract

Throughout life, neural circuits change their connectivity, especially during development, when neurons frequently
extend and retract dendrites and axons, and form and eliminate synapses. In spite of their changing connectivity,
neural circuits maintain relatively constant activity levels. Neural circuits achieve functional stability by homeostatic
plasticity, which equipoises intrinsic excitability and synaptic strength, balances network excitation and inhibition, and
coordinates changes in circuit connectivity. Here, we review how diverse mechanisms of homeostatic plasticity stabilize
activity in developing neural circuits.
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Background
Nervous systems face a constant challenge: how to
maintain flexibility and stability at the same time. Neural
circuits must stay flexible to allow for changes in con-
nectivity and synaptic strength during development and
learning. As changes in connectivity push neural circuits
away from equilibrium, they need to maintain activity
within a working range and avoid extremes of quies-
cence and saturation. Functional stability is maintained
by homeostatic plasticity, which is defined broadly as a
set of neuronal changes that restore activity to a setpoint
following perturbation [1–3]. Recent studies have identi-
fied diverse homeostatic plasticity mechanisms triggered
by a variety of perturbations. These mechanisms regulate
dendritic and axonal connectivity of a neuron, as well as
its intrinsic excitability (Fig. 1). In addition to maintain-
ing the activity of individual neurons, homeostatic plasti-
city can act at a network level to coordinate changes in
connectivity and excitability across multiple neurons to
stabilize circuit function [4] (Fig. 2). Several recent re-
views have covered the function of homeostatic plasticity
in the mature nervous system [5–8]. Here, we focus on
homeostatic plasticity in developing circuits.

Homeostatic regulation of intrinsic excitability
Neuronal intrinsic excitability is determined by the density,
distribution, and function of ion channels, and controls
how synaptic inputs are converted into action potential out-
puts [9]. Several studies have found a reciprocal relationship
between intrinsic excitability and synaptic inputs across de-
velopment, which stabilizes activity [10–12]. As synaptic in-
puts increase in developing Xenopus retinotectal circuits,
Na+ currents decrease, reducing intrinsic excitability [12].
Conversely, silencing synaptic inputs to developing Xenopus
tectal neurons and Drosophila motorneurons increases Na+

currents and intrinsic excitability [10, 12, 13]. Several
mechanisms mediate homeostatic changes in Na+ currents.
Translational repression and post-translational phosphoryl-
ation reduce the density and open probability, respectively,
of voltage-gated Na+ channels in Drosophila motorneurons
and rat cortical neurons in response to elevated
synaptic activity [11, 14–17].
Multiple ion channels in the same neuron can balance

each other to stabilize activity [2, 18, 19]. For example, the
A-type K+ channels shal and shaker are reciprocally
regulated in motorneurons of Drosophila larvae: shaker is
up-regulated in shal mutants, and shal is up-regulated in
shaker mutants [20]. However, compensatory expression is
not always a two-way street; in Drosophila mutants of the
delayed rectifier K+ channel shab, increased expression of
the Ca2+-dependent K+ channel slo prevents motorneuron
hyperactivity, but, loss of slo does not increase expression
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of shab [21]. Neurons can synergistically regulate ion
channels with opposite effects on excitability to restore
activity. Silencing of pyramidal neurons cultured from
visual cortex of rat pups with TTX increases Na+ currents
and decreases K+ currents [22]. Finally, neurons of the
same type with similar excitability can vary significantly in
their membrane conductances, which may reflect the
complex homeostatic interactions between ion channels
[23–25] (for more discussion, see [26, 27]).
Detailed examination of the distribution of ion chan-

nels revealed an important role of the axon-initial-
segment (AIS) in intrinsic homeostatic plasticity.
Changes in length and location of the AIS, a specialized
region with clusters of voltage-gated Na+ and K+

channels involved in spike generation, can counter the
effects of sensory deprivation or photostimulation [28–31].
In mice, eye opening at postnatal day 13–14 shortens
the AIS of pyramidal neurons in visual cortex [32, 33].
Together, adjustments in ion channel density, distribution,
and function, resulting from changes in transcription,

translation, post-translational modifications, and traf-
ficking, can alter intrinsic excitability and balance
changes in synaptic input to maintain activity homeo-
stasis [9, 34–36].

Homeostatic regulation of synapse strength and number
Homeostatic plasticity can regulate synaptic strength
pre- and postsynaptically, and its dominant expression
site can shift during development. In the early stages of
network formation, miniature excitatory postsynaptic
current (mEPSC) amplitudes increase when spike gener-
ation is blocked in cortical and hippocampal neuron cul-
tures (i.e., suppression of intrinsic excitability), indicative
of postsynaptic changes in AMPA receptor accumulation
[37]. At later stages, presynaptic regulation of vesicle re-
lease and recycling is added, and mEPSC frequencies
increase along with mEPSC amplitudes when spike gener-
ation is blocked [37, 38]. This suggests a developmental
shift in the capacity for pre- and postsynaptic homeostatic
plasticity [37]. Homeostatic control of synaptic strength

Fig. 1 Diverse homeostatic plasticity mechanisms stabilize the activity of developing neurons. When the activity of individual neurons decreases
below (1 and 2) or increases above (3 and 4) a setpoint, homeostatic regulation of synaptic strength (1 and 3) and/or intrinsic excitability (2 and 4)
acts to restore normal activity. By increasing (1) or decreasing (3) synaptic input (e.g., changes in mEPSC amplitude or frequency), a neuron’s output
firing rate can be shifted up or down to the target activity (grey area). By increasing (2) or decreasing (4) intrinsic excitability (e.g., changes in the
length and location of AIS), a neuron’s input/output relationship can be modified
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has also been observed in vivo [39, 40]. The extent and ex-
pression site of this control depends on circuit maturation
[41–45]. Homeostatic synaptic plasticity in layers 4 and 6
of primary visual cortex elicited by visual deprivation is re-
stricted to an early critical period (postnatal day 16 to 21)
[42, 43]. Later, homeostatic regulation of mEPSC ampli-
tudes shifts to layers 2/3, where it persists into adulthood
[42, 44]. The purpose of this shift in homeostatic plasticity
across cortical layers remains unknown [41]. Chronic ac-
tivity suppression by intracranial infusion of the Na+

channel blocker TTX or NMDA receptor blockers
increases spine densities of developing thalamocortical
neurons in the dorsolateral geniculate nucleus of cats and
ferrets [46, 47]. Thus, homeostatic plasticity can regulate
synapse number as well as strength [48–50].
In addition to homeostatic synaptic changes elicited by

experimental perturbations, Desai et al. showed that
across development, mEPSC amplitudes in layers 2/3
and 4 of rat primary visual cortex decrease as mEPSC
frequencies and synapse numbers increase [42]. Retino-
geniculate circuits provide another example of develop-
mental homeostatic co-regulation [51–53]. Initially,
many retinal ganglion cells converge onto thalamocorti-
cal cells, each forming weak connections. Then, for up
to 3 weeks after eye opening, thalamocortical cells prune
inputs, retaining synapses from fewer ganglion cells,

which strengthen their connections [53, 54]. Thus, pre-
synaptic neurotransmitter release, postsynaptic receptor
abundance, and synapse number are homeostatically co-
regulated during normal development and after activity
perturbations. In several systems, the expression sites
and the combination of mechanisms engaged shift
across development [2, 3, 55–57].

Homeostatic regulation of network activity
Homeostatic plasticity can stabilize the activity of individ-
ual neurons [54, 58, 59]. Neurons connect to each other
in a cell-type-specific manner, forming circuits that per-
form specific functions. In the following sections, we dis-
cuss how homeostatic mechanisms are coordinated across
neurons to stabilize circuit function [4, 60].

Homeostatic regulation of network excitation and inhibition
Network activity is determined by the ratio of excitation
and inhibition (E/I ratio) [1, 4, 61]. In response to per-
turbations, developing circuits can differentially adjust
inhibitory and excitatory connectivity to alter the E/I ra-
tio and restore activity [62–65]. In developing hippo-
campal and organotypic cerebellar cultures, TTX or
glutamate receptor antagonists decrease inhibitory syn-
apse densities and strengths, whereas blocking GABAer-
gic transmission with bicuculline increases the density of

Fig. 2 Network-level homeostatic plasticity stabilizes activity of developing circuits. Network activity homeostasis is achieved by balancing excitation
(red) and inhibition (blue). Synaptic strength and connectivity can be regulated in a cell-type-specific manner to maintain network homeostasis.
Upward/downward red arrows: increased/decreased excitatory drive; upward/downward blue arrows: increased/decreased inhibitory drive
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inhibitory synapses. Similarly, brain slice recordings in
barrel cortex layer 4 showed that sensory deprivation
selectively reduces inhibitory input to layer 4 spiny
neurons in young but not in adult animals [66, 67].
Activity-dependent changes in inhibitory synaptic
transmission appear to be regulated non-cell autono-
mously, as activity suppression of individual presynap-
tic or postsynaptic cells failed to elicit compensatory
changes observed after global application of TTX in
neonatal cultured hippocampal neurons [65]. It has
been suggested that inhibitory interneurons may sacri-
fice their own firing rate homeostasis to stabilize spik-
ing of cortical pyramidal neurons after global activity
blockade [4, 68]. Another example of network homeo-
stasis comes from studies of monocular deprivation
during the critical period [4]. Here, homeostatic plas-
ticity adjusts recurrent and feedforward connections
between layer 4 circuits and layer 2/3 circuits in pri-
mary visual cortex. Visual deprivation via intraocular
TTX injection increases the excitatory drive and reduces
inhibitory drive from layer 4 to layer 2/3, compensating
for the lost excitatory sensory input [4, 69, 70]. Intri-
guingly, in another deprivation paradigm (i.e., lid suture),
increased intrinsic excitability and decreased E/I ratios
stabilize activity in layer 2/3, indicating the same circuit
can use different combinations of homeostatic mecha-
nisms to compensate for sensory deprivation.
In addition to regulating excitatory and inhibitory syn-

apse strength and number, homeostatic plasticity can
switch the transmitter phenotype of neurons from glu-
tamate to GABA or vice versa to adjust the E/I ratio of
developing circuits [71–73]. In the embryonic Xenopus
spinal cord, the fractions of neurons expressing excita-
tory transmitters increase and decrease, respectively,
when network activity is pharmacologically suppressed
and enhanced. These switches in transmitter phenotype
occur without changes in the expression of cell identity
markers [74]. Similar to homeostatic regulation of in-
hibitory synapses, the activity-dependent transmitter
switch is non-cell autonomous and depends on network
activity, evidenced by the reciprocal relationship between
the number of silenced cells and the ratio of neurons ex-
pressing GABA vs. glutamate [75]. Whether switches in
transmitter phenotypes contribute to network homeosta-
sis during normal development remains to be investi-
gated [71].

Homeostatic regulation of cell-type-specific connectivity
Recent advances in single-cell RNA sequencing together
with large-scale morphological and functional surveys
have revealed a great diversity of excitatory and inhibi-
tory cell types, which serve distinct circuit functions
[76–79]. This raises the questions whether, beyond cat-
egorical differences between excitatory and inhibitory

neurons, homeostatic plasticity may act in a cell-type-
specific manner to stabilize circuit function [80]. In the
developing dentate gyrus, loss of excitatory drive by tet-
anus toxin expression results in reduced inhibitory input
to granule cells [81]. This reduction is cell-type specific,
affecting somatic innervation by parvalbumin-positive
basket cells, but not dendritic innervation by calretinin-
and somatostatin-expressing interneurons. Selective re-
duction of somatic inhibition efficiently restores the
firing of granule cells [82, 83]. Similarly, monocular
deprivation during a pre-critical period was shown to
regulate feedback but not feedforward inhibition to layer
4 pyramidal cells in rat primary visual cortex [84]; and
early hearing loss weakens inhibitory synapses from fast-
spiking interneurons but not from low-threshold spiking
interneurons onto pyramidal cells [85, 86].
Homeostatic regulation of excitatory connectivity can

also be cell type specific [87]. In the developing mouse
retina, following removal of their dominant B6 bipolar
cell input, ONα retinal ganglion cells up-regulate con-
nectivity with XBC, B7, and rod bipolar cells, but leave
input from B8 bipolar cells unchanged. This cell-type-
specific rewiring not only maintains the sustained ac-
tivity of ONα retinal ganglion cells, but also precisely
preserves their light responses. Thus, homeostatic
plasticity can regulate inhibitory and excitatory connectiv-
ity in a cell-type-specific manner to maintain the activity
and sensory function of developing circuits.

Homeostatic regulation of patterned spontaneous activity
Throughout the nervous system, developing circuits
spontaneously generate activity patterns that help refine
their connectivity [88, 89]. Before eye opening, waves of
activity originating in the retina propagate through the
visual system and dominate activity up to primary visual
cortex [90–92]. Retinal waves mature in three stages
(I-III), in which different circuit mechanisms generate
distinct activity patterns that serve specific functions
in visual system refinement [88]. In mice, stage I
waves, which are mediated by gap-junctional coupling
of retinal ganglion cells, were first observed at embry-
onic day 17. Around birth, the wave generation
switches to networks of cholinergic amacrine cells
(stage II, postnatal day 1–10) followed in the second
postnatal week by glutamatergic input from bipolar
cells (stage III, postnatal day 10–14). The transitions
between stages appear to be homeostatically regulated.
When stage II (i.e., cholinergic) waves are disrupted
by genetic deletion or pharmacological blockade of ß2
nicotinic acetylcholine receptors nAChRs, stage I
waves persist until premature stage III waves take
over [93–96]. Similarly, in VGluT1 knockout mice, in
which stage III waves are abolished, stage II waves
persist until eye opening [97]. Studies of developing
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spinal networks revealed an important role of excita-
tory GABAergic currents in homeostatic regulation of
patterned spontaneous activity [98]. During develop-
ment, GABA switches from excitatory to inhibitory as
initially high intracellular Cl− concentrations are lowered
by the developmentally regulated expression of cation-
chloride cotransporters [99, 100]. When spontaneous net-
work activity in chick embryos was reduced by injection
of a sodium channel blocker, excitatory GABAergic
mEPSC amplitudes were found to increase because of an
increased Cl− driving force due to intracellular Cl−

accumulation [101, 102].
Although homeostatic mechanisms can restore spontan-

eous activity patterns following perturbations, the extent
to which these activity patterns support normal circuit re-
finement varies depending on age and means of perturb-
ation and needs to be further investigated [103–105].

Conclusions
Developing circuits undergo profound changes in con-
nectivity that threaten to destabilize their activity. Recent
research has revealed a diverse set of homeostatic plasti-
city mechanisms, which safeguard activity of developing
circuits. Different combinations of these mechanisms are
recruited by different perturbations in different neuronal
cell types at different stages of development. What sig-
nals control the recruitment of specific combinations of
mechanisms is unclear and an interesting topic for
future studies [41, 55].
Another important and mostly unanswered question is

how activity setpoints are determined [2, 106–108].
Recent evidence suggests that this may occur during
specific critical periods of development [109, 110]. Alter-
ing network activity in wild-type Drosophila during a
critical period induces subsequent seizures, whereas cor-
recting abnormal activity in mutant flies during the same
period is sufficient to suppress seizures for life. Import-
antly, in the seizure-prone flies, homeostatic plasticity
mechanisms are intact, but working toward the “wrong”
setpoints. Insights into critical period timing and deter-
minants of activity setpoints could have significant im-
plications for the treatment of neurodevelopmental
diseases including epilepsy and autisms [111–114].
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