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Abstract

Background: Sulfated glycosaminoglycan chains are known for their regulatory functions during neural development
and regeneration. However, it is still unknown whether the sulfate residues alone influence, for example, neural
precursor cell behavior or whether they act in concert with the sugar backbone. Here, we provide evidence that the
unique 473HD-epitope, a representative chondroitin sulfate, is expressed by spinal cord neural precursor cells in vivo
and in vitro, suggesting a potential function of sulfated glycosaminoglycans for spinal cord development.

Results: Thus, we applied the widely used sulfation inhibitor sodium chlorate to analyze the importance of normal
sulfation levels for spinal cord neural precursor cell biology in vitro. Addition of sodium chlorate to spinal cord neural
precursor cell cultures affected cell cycle progression accompanied by changed extracellular signal-regulated kinase 1
or 2 activation levels. This resulted in a higher percentage of neurons already under proliferative conditions. In contrast,
the relative number of glial cells was largely unaffected. Strikingly, both morphological and electrophysiological
characterization of neural precursor cell-derived neurons demonstrated an attenuated neuronal maturation in the
presence of sodium chlorate, including a disturbed neuronal polarization.

Conclusions: In summary, our data suggest that sulfation is an important regulator of both neural precursor cell
proliferation and maturation of the neural precursor cell progeny in the developing mouse spinal cord.
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Background

Complex carbohydrate moieties attached either to
secreted extracellular matrix molecules or to membrane
bound cell adhesion molecules are important players for
central nervous system (CNS) development, because they
can bind a multitude of cytokines or growth factors [1-3].
Among these carbohydrate structures, the chondroitin
sulfate (CS) glycosaminoglycans (GAGs) have been proved
to be particularly important for neural precursor cell
(NPC) biology, because interference with CS-GAG biol-
ogy using the bacterial enzyme chondroitinase ABC
(ChABC) strongly affects NPC proliferation and differenti-
ation [4-7]. CS-GAGs are highly sulfated, and the sulfation
pattern results from the specific expression pattern of
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various CS-sulfotransferases during CNS development
and in adulthood [8]. Sulfated CS-GAGs also play a role
in pathophysiological situations. Up-regulation of CS pro-
teoglycans (PGs) bearing complex CS-GAGs after CNS
injury is associated with a specific sulfation pattern on
CS-GAGs, mediating potentially inhibitory properties of
PGs on axonal regeneration [9,10]. These inhibitory prop-
erties can be overcome using ChABC in combination with
defined motor tasks [11,12]. However, different sulfation
patterns appear to differentially affect axonal regeneration
after CNS lesion [13].

Besides CS-GAGs, the heparan sulfate (HS)-GAGs con-
stitute a second major class of sulfated glycans in the
CNS. HS-GAGs are known for their strong impact on
fibroblast growth factor (FGF) and Sonic hedgehog signal-
ing [14]. In addition, some other glycan structures can be
sulfated as well. Among these, the complex LewisX glycan,
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which is expressed by NPCs during development and in
adulthood [15-17], and the human natural killer 1 antigen
are the most prominent ones [18].

The transfer of sulfate on the glycosaminoglycan back-
bone of CS-GAGs and HS-GAGs is catalyzed by CS- or
HS-specific sulfotransferases located in the Golgi apparatus
[19,20]. 3’-phosphoadenosine 5’-phosphosulfate (PAPS)
serves as the sulfate donor. The enzymatic generation of
PAPS can be inhibited using sodium chlorate (NaClOs)
[21], resulting in hypo-sulfated GAG chains. Therefore,
NaClOs is often used to pharmacologically interfere with
GAG biology. Here, we used NaClOj to further elucidate
the role of sulfation for differentiation and proliferation of
spinal cord NPCs cultivated as free floating neurospheres.
Neurospheres treated with NaClO3 showed a reduction in
growth accompanied by changes in neuronal differentiation
and maturation. In contrast, differentiation towards glial
lineages seemed to be largely unaffected. Thus, we propose
that the proliferation of spinal cord NPCs and the matur-
ation of spinal cord NPC-derived neurons depend on a spe-
cific sulfation pattern during development.

Methods

Animals

All experiments were performed according to inter-
national rules using timed-pregnant wild-type NRMI mice
kept under standard housing conditions. The age of the
embryos was determined following the Theiler Stages, and
the day of the vaginal plug was considered as EO0.5.

Neurosphere culture

Cultivation of mouse spinal cord NPCs was carried out as
previously described [22]. Briefly, the spinal cords of E13.5
to E18.5 mouse embryos were dissected using small for-
ceps. Afterwards, the isolated spinal cords were enzymati-
cally dissociated with 30 U/mL Papain (Worthington,
New Jersey, USA), resulting in a single cell suspension.
After centrifugation for 5 min at 200 g the cell sediment
was resuspended in neurosphere medium containing
DMEM and nutrient mixture F12 (in a ratio of 1:1; both
Gibco, Karlsruhe, Germany), 2 % (v/v) B27 (Invitrogen,
Karlsruhe, Germany), 1 % (v/v) L-glutamine (Invitrogen)
and 1 % (v/v) penicillin/streptomycin (Invitrogen). Under
proliferative conditions, either 1,250 cells/mL (clonal
density) or 100,000 cells/mL (high density culture) were
plated, and either 10 ng/mL (clonal density) or 20 ng/mL
(high density culture) EGF and FGF2 (both PreproTech,
Rocky Hill, USA) were added. FGF2 containing cultures
were additionally supplemented with 0.25 U/mL (clonal
density) or 0.5 U/mL (high density culture) heparin
(Sigma-Aldrich, Munich, Germany). After one week at 37°
Cand 5 % (v/v) CO,, neurospheres had formed. For clonal
analyses, the cells were kept for one week without any agi-
tation, in order to avoid neurosphere fusion events. As
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recently described, 30 mM NaClOj; or the respective solv-
ent were added for the entire cultivation period [23].

For differentiation analyses, primary neurospheres were
dissociated using trypsin/ethylenediaminetetraacetic acid
(EDTA; Invitrogen) for 4 min at 37°C, and single cells
were plated at 5,000 cells/well onto poly-DL-ornithine
/laminin coated four-well dishes (Greiner, Frickenhausen,
Germany) for another 4 days in the presence of 1 % (v/v)
FCS and either 30 mM NaClO; or the respective solvent.
Afterwards, the cells were either subjected to immuno-
cytochemical or electrophysiological analyses.

Immunological reagents

In the following the primary antibodies and the respective
dilutions used in this study are listed. The monoclonal
antibodies were: anti-O4 (1:50; mouse IgM) [24], anti-
Nestin (1:500; mouse IgG; clone rat-401; Chemicon,
Hotheim, Germany), anti-a-Tubulin (1:10,000; mouse IgG;
clone DMla; Sigma-Aldrich), anti-pIII-Tubulin (1:500;
mouse IgG; clone SDL3D10; Sigma-Aldrich) and anti-
DSD-1-epitope (1:300 (immunofluorescence), 1:100 (west-
ern blot); rat IgM; clone 473) [25]. The polyclonal anti-
bodies were: anti-GFAP (1:300; rabbit; Dako, Hamburg,
Germany), anti-EGFR (1:500; rabbit; Santa Cruz, Hamburg,
Germany), anti- receptor protein tyrosine phosphatase
(RPTP)-B/¢ (1:300 (immunofluorescence), 1:1000 (western
blot); rabbit; batch Kaf13/5) [25], anti-BLBP (1:300; rabbit;
Chemicon), anti-GLAST (1:1000; guinea-pig; Chemicon),
anti-pH3 (1:300; rabbit; Chemicon), anti-Erk1/2 (1:1000;
rabbit; Santa Cruz), anti-pErk1/2 (1:1000; rabbit; Cell Sig-
naling Technologies, Beverly, USA), anti-Akt (1:1000;
rabbit; Cell Signaling Technology), anti-pAkt (1:1000;
rabbit; Cell Signaling Technologies), anti-MAP2 (1:300:
rabbit; Chemicon) and anti-Tau (1:300; mouse IgG) [26].

Immunohistochemistry

Pregnant mice were killed by cervical dislocation, and
the embryos were immediately removed. The embryos’
trunks were washed once with PBS and then fixed in
4 % (w/v) paraformaldehyde (PFA) at 4°C. Depending on
the age of the embryo, the fixation time varied between
30 min (E9.5) and 20 h (E18.5). After fixation the
embryos were transferred to 20 % (w/v) sucrose for cryo-
protection. Finally, the tissue was embedded in Tissue
Tec Freezing Medium (Jung, Nussloch, Germany) and
cut into 16 pm thin sections on a cryostat CM3050S
(Leica, Solms, Germany). The sections were mounted
on superfrost slides (Thermo Scientific, Schwerte,
Germany) and stored at —20°C until further use.

For immunohistochemical analyses of neurospheres,
the neurospheres were transferred into a 1.5 mL Eppen-
dorf tube, briefly washed with PBS and then fixed for
1 hin 4 % (w/v) PFA at 4°C. Subsequently, the PFA was
removed, and 20 % (w/v) diethylpyrocarbonate-treated
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sucrose was added for cryoprotection for 4 h at 4°C. Fi-
nally, the neurospheres were embedded using Tissue
Tec Freezing Medium and cut into 16 pm thin cryosec-
tions on a cryostat CM3050S. The cryosections were
rehydrated and blocked for 1 h at room temperature
with PBT1 (PBS+1 % (w/v) BSA +0.1 % (v/v) Triton X-
100) and 1.7 % (w/v) NaCl-PBS (PBS + 0.9 % (w/v) NaCl)
in a ratio of 1:1 plus 10 % (v/v) normal goat serum, fol-
lowed by incubation with the primary antibodies diluted
in PBT1 +5 % (v/v) normal goat serum overnight at 4°C.
The next day, the sections were washed three times with
PBS and subsequently incubated with species-specific
antibodies coupled with either Cy2 (1:250) or Cy3
(1:500) (Dianova, Hamburg, Germany) diluted in PBS/A
(PBS+0.1 % (w/v) BSA) for 3 h at room temperature.
Hoechst 33528 (Sigma) was included (diluted 1:10° in
PBS), to additionally label the nuclei. The sections were
washed three times with PBS and finally mounted with
ImmuMount (Invitrogen).

Immunocytochemistry

After removal of the culture medium, adherent cells were
briefly washed twice with PBS/A. In case of membrane
bound or extracellular epitopes (04, 473HD), the incuba-
tion with the primary antibody diluted in PBS/A was dir-
ectly carried out for 30 min at room temperature. Then,
the cells were washed again three times with PBS/A and
fixed with 4 % (w/v) PFA for 10 min at room temperature.
To detect intracellular epitopes, the fixation was performed
prior to the incubation with the primary antibodies diluted
in PBT1. After incubation with the primary antibody, the
cells were washed three times with PBT1 and the incuba-
tion with either Cy3- or Cy2- or HRP (1:500)-coupled
species-specific secondary antibodies (Dianova) diluted in
PBS/A was carried out at room temperature for 30 min.
Hoechst 33528 (1:10°) was additionally added to visualize
the nuclei. Finally, the cells were washed twice with PBS
and mounted in PBS and glycerine (2:1). For BrdU incorp-
oration analysis, 1 {M BrdU was added to the neurospheres
for 1 h. Then, the neurospheres were dissociated, and single
cells were plated on a poly-DL-ornithine substrate for two
hours. Finally, the BrdU-immunocytochemistry was carried
out using the BrdU-labeling and detection Kit I (Roche,
Mannheim, Germany) according to the manufacturer’s
instructions. The diaminobenzidin staining was carried out
by incubating the cells with freshly prepared diaminobenzi-
din (Sigma-Aldrich) diluted in double distilled water for
10 min after incubation with the HRP-coupled secondary
antibody. Finally, the cells were washed twice with double
distilled water and mounted in PBS and glycerine (2:1).

Western blot
Neurospheres were homogenized and solubilized by
mechanical agitation in 4°C cold cell lysis buffer (50 mM
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Tris—HCI pH 7.4; 150 mM NaCl; 5 mM EDTA; 5 mM
ethyleneglycotetraacetic acid; 1 % (v/v) Triton X100;
0.1 % (v/v) Na-desoxycholate; 0.1 % (v/v) SDS) and incu-
bated for further 30 min on ice. The lysate was then
cleared by centrifugation (16,000 g) at 4°C. The protein
concentration was determined using a protein quantifi-
cation kit (Pierce, Rockford, USA) according to the man-
ufacturer’s instructions. 10 pug protein was separated on
a7 % (v/v) SDS-gel and transferred to a PVDF mem-
brane (Roth, Karlsruhe, Germany). After transfer the
membrane was blocked with 5 % (w/v) skim milk pow-
der in Tris-buffered-Saline (TBS) for one hour at room
temperature. The primary antibodies were diluted in 5 %
(w/v) skim milk powder in TBS +0.05 % (v/v) Tween20
(TBST) and incubated at 4°C over night. Subsequently,
the membrane was washed three times with TBST for
10 min and the incubation with the HRP-coupled sec-
ondary antibodies (1:5000) diluted in 5 % (w/v) skim
milk powder in TBST was carried out at room
temperature for one hour. Finally, the membrane was
washed again three times with TBS, and the signal was
detected using enhanced chemiluminescence reagent
(Pierce, Rockfort, USA).

Electrical recordings

Whole cell patch-clamp recordings of spinal cord NPC-
derived neurons were performed using borosilicate glass
pipettes of a mean resistance of 2—-6 MQ. The glass pip-
ettes were filled with a solution, mimicking the intracellu-
lar ion concentrations (100 mM K-gluconate, 0.1 mM
CaCl,, 1.1 mM EDTA, 5 mM MgCl,, 5 mM NaCl, 10 mM
HEPES, 3 mM MgCl,-ATP, pH 7.35, 235 mOsm). For the
experiments, the cell culture medium was removed and
the cells were washed twice with the bath solution
(110 mM NaCl, 54 mM KCl, 1.8 mM CaCl,, 0.8 mM
MgCl,, 10 mM HEPES, 10 mM glucose, pH 7.35,
250 mOsm) and finally kept in the bath solution at room
temperature for no longer than 1 h. The setup was
equipped with an inverse microscope including phase
contrast optics. The data were acquired using an EPC7
patch-clamp amplifier and processed via Pclamp 6 soft-
ware. After liquid junction potential correction, the cell
was depolarized from -77 mV to 53 mV in 5 mV steps, in
order to analyze both the mixed sodium and potassium
current density. The cell capacitance was calculated from
the integral of the charging curve after application of a
step depolarization of 10 mV amplitude. The sodium
current was determined from the peak amplitude for a
step depolarization to —12 mV. The potassium current
was determined after 200 ms of depolarization to 28 mV.
To account for the cell size, the calculated currents were
normalized to the cell capacitance. Thus, the current
densities data are displayed in the units A/F. The data
were pooled from five independent preparations. In total,
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29 control cells and 31 NaClO; treated cells were ana-
lyzed. Each cell with a leak current of more than 20 pA
was excluded from the final data analysis, resulting in 12
control cells and 16 NaClO; treated cells.

Documentation and data analysis

Pictures were taken at an Axioplan2 microscope with
the AxioCam HRc camera using the AxioVision 4.4 and
4.5 software (Zeiss, Jena, Germany). For quantitative
analyses of immunocytochemical antigen detections, a
minimum of 200 Bisbenzimid-positive nuclei were
counted in at least three independent experiments per
antibody and culture condition.

To quantify the neurosphere formation from primary
spinal cord cells, the number of all neurospheres in the
whole culture flask was counted after one week. In order
to prevent the formation of non-clonal neurospheres, the
culture flasks were not taken out of the incubator during
the cultivation period. The diameters of single neuro-
spheres as well as the neuronal morphology were analyzed
using Image] v1.41. Unless otherwise stated, the data are
expressed as mean+SD. Statistical significance was
assessed using the paired and unpaired two-tailed Student’s
t test and the P-values are given as *P <0.05, **P <0.01, and
P <0.001.

Results

The sulfation-dependent 473HD-epitope is expressed by
neural precursor cells in the embryonic mouse spinal cord
Since systematic data concerning the expression of GAG
chains throughout spinal cord development are missing, we
started with an expression analysis of the 473HD-epitope, a
representative CS-GAG present on the chondroitin sulfate
proteoglycan phosphacan/RPTPB/{ [25,27]. Immunohisto-
chemical detection of the 473HD-epitope on frontal spinal
cord sections between E9.5 and E185 show its up-
regulation towards the end of neurogenesis at E12.5 (Add-
itional file 1: Figure S1A, B). The expression was particularly
high in the ventral spinal cord between E13.5 and E15.5
(Additional file 1: Figure S1C, D). Towards the end of em-
bryogenesis at E18.5, the 473HD-epitope could be detected
within the whole spinal cord except for the central canal re-
gion (Additional file 1: Figure S1E). Further immunohisto-
chemical analyses on frontal E13.5 spinal cord sections
(Figure 1A) revealed that the 473HD-epitope was expressed
by Nestin-positive NPCs in vivo (Figure 1B-D). Note that
most of the ventricular zone lacks immunoreactivity for the
473HD-epitope except for a distinct region within the ven-
tral spinal cord. To investigate the cellular source, we disso-
ciated the spinal cord from various embryonic ages and
plated single cells in low density for two hours on a poly-
DL-ornithine substrate. After that, we immunocytochemi-
cally characterized the cells using various cell type specific
markers. We observed that many 473HD-positive cells co-
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expressed the NPC markers Nestin, BLBP and GLAST
(Figure 1E-G). In contrast, we never observed 473HD
immunoreactivity on BIII-Tubulin-positive young neurons
(Figure 1H). We further quantified the relative number of
473HD-positive cells expressing the NPC markers Nestin,
BLBP and GLAST at E13.5, E15.5 and E18.5. Our findings
are summarized in Table 1. The percentage of 473HD-
positive cells co-expressing one of the mentioned markers
was about 5 % for each marker at E13.5 but increased within
the next two days to around 10 % (Figure 1I and Table 1).
Towards the end of embryogenesis at E18.5, the percentage
of Nestin- and-473HD-positive cells decreased again, while
the BLBP-and-473HD populations increased and the
GLAST-and-473HD populations did not change (Figure 1I
and Table 1). Finally, we determined the overall 473HD-
positive cell population throughout development and found
a general increase in the relative amount of 473HD-positive
cells between E12.5 and E18.5, consistent with our immuno-
histochemical analyses (E12.5: 6.2+19 % (n=4); E13.5:
90+33 % (n=10); E155: 152+27 % (n=10); E185:
23.2 5.3 % (n = 8); Figure 1J).

Sodium chlorate efficiently reduces the level of the
sulfation-dependent 473HD-epitope in spinal cord neural
precursor cell cultures

Several studies dealing with GAG biology were based on
the usage of NaClOs, in order to interfere with the sulfa-
tion levels of the GAG chains. In this study we applied
NaClOsand asked whether alterations in sulfation levels
might regulate proliferation, survival and differentiation of
spinal cord NPCs grown as free floating neurospheres.
We cultured primary neurospheres from E13.5 spinal cord
cells and analyzed the expression of the sulfation-
dependent 473HD-epitope and its carrier protein RPTPp/
{ after one week. Western blot analyses of neurosphere
detergent extracts revealed that neurospheres expressed
high levels of the 473HD-epitope under standard culture
conditions. The addition of NaClOj; strongly reduced the
473HD levels in comparison to the solvent control
(Figure 2A). However, the expression levels of its carrier
protein itself appeared not to be affected (Figure 2A). In
an independent experiment, neurosphere cryosections
were labeled for the 473HD-epitope as well as RPTPR/C.
Consistent with the western blot analysis, the 473HD-
immunoreactivity was strongly reduced when sulfation
levels were decreased using NaClOs (Figure 2B). The
RPTPPB/¢ immunoreactivity, however, seemed to be
enhanced, potentially reflecting an enhanced accessibility
of the epitope rather than an increased expression level
(Figure 2B), since the western blot analysis did not reveal
changes in the RPTPP/( expression. Yet, these data dem-
onstrate the suitability of NaClOj3 to suppress normal sul-
fation levels in spinal cord NPC cultures.
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Figure 1 The 473HD epitope is expressed by neural precursor cells during embryonic mouse spinal cord development. (A) Schematic
drawing of frontal E13.5 spinal cord sections, illustrating the spinal cord region shown in B-D. (B-D) Photomicrographs of frontal spinal cord
sections stained against the 473HD- epitope and the NPC marker Nestin, showing the colocalization of the 473HD- epitope with Nestin-positive
NPC processes around the central canal. (E-H) Photomicrographs of acutely dissociated spinal cord cells stained against the 473HD-epitope in
combination with either the NPC markers Nestin, BLBP and GLAST or the neuronal marker Blll-Tubulin. The 473HD-epitope was exclusively
expressed by NPCs. In contrast, we never observed any neuronal expression of the 473HD-epitope. (I) Quantification of double immunopositive
cells. At E13.5, the percentage of 473HD-positive cells that also expressed one of the NPC markers was relatively low. The relative amount of
473HD-and-Nestin-positive cells peaked at E15.5. In contrast the 473HD-and-BLBP-positive and the 473HD-and-GLAST-positive populations
gradually increased towards the end of embryogenesis. (J) Quantification of 473HD-positive cells throughout embryonic spinal cord
development, showing the gradual increase of 473HD-positive cells between E12.5 and E18.5. To visualize the nuclei, the cells were

Sodium chlorate affects spinal cord neural precursor cell
growth

We recently reported on a decreased neurosphere formation
capacity from primary cortical cells upon chlorate treatment
[8]. Thus, we started to analyze the influence of NaClO3 on
NPC proliferation by assaying the clonal neurosphere for-
mation from E13.5 primary spinal cord cells. In order to in-
vestigate whether NaClO3; might just affect NPC
subpopulations, we grew neurospheres under different
growth factor conditions. Figure 3A,B shows representative

pictures of neurospheres grown in the presence of EGF and
FGF2 under control or NaClOj3 conditions. Typical neuro-
spheres of 100 um to 200 um diameter formed within one
week under control conditions. In contrast, NaClOs-treated
neurospheres were smaller. Moreover, the number of pri-
mary neurospheres was significantly reduced upon NaClO3
treatment (without: 75.6 + 35.2; NaClOs: 33.8+15.1; n=5;
P=0.04; Figure 3C). In parallel, neurospheres were grown
in high density cultures in the presence of EGF and FGF2,
and the total cell number, as a measurement for the overall
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Table 1 Immunocytochemical characterization of 473HD-
positive spinal cord cells in the embryonic spinal cord

Marker E12.5 E13.5 E15.5 E18.5

473HD 62+19% 90+33%  152+27%  232+53%
(n=4) (n=10) (n=10) (n=8)

Nestin/473HD ND 64+20% 106+45%  49+19%
(n=6) (n=3) (n=4)

BLBP/473HD ND 87+24%  12.7+24%  173+26%
(n=5) (n=5) (n=4)

GLAST/473HD ND 68+28% 9.0+21% 9.7 +24%
(n=4) (n=5) (n=4)

The data are depicted as mean £ SD. ND: not determined.

proliferation rate, was determined after one week. In the
presence of NaClO3; we observed strongly reduced total cell
numbers in the culture flasks (without: 2,240,000 + 149,000;
NaClO3: 622,000 + 219,000; n =4; P =0.001; Figure 3D).

Next, we analyzed the influence of NaClO3 on EGF- or
FGF2-dependent neurosphere formation. Again, the quanti-
fication revealed a general decrease in neurosphere forma-
tion capacity independently of the growth factor added
(EGF only: 27.0+6.9; EGF and NaClOs: 13.3+3.5; n=3;
P=0.034; FGF2 only: 63.0+20.7; FGF2 and NaClOs:
17.0 + 4.4; n = 3; P=0.044; Figure 3E).

Finally, we further analyzed the effect of NaClO; on the size
of neurospheres grown in the presence of EGF and FGF2 for
one week. For that purpose, photomicrographs of single neu-
rospheres were used to measure the diameter of respective
colonies. Data from four independent experiments revealed
that the addition of NaClO; resulted in a shift towards smal-
ler neurospheres at the expense of larger neurospheres
(Figure 3F). However, since there were still some large neuro-
spheres in the presence of NaClO3, NaClOjs itself might only
affect the proliferation rate of a subpopulation of NPCs.
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Sodium chlorate leads to G2-phase retention of spinal
cord neural precursor cells

In order to further analyze the influence of NaClO3; on NPC
proliferation, we examined the cellular composition of neu-
rospheres grown for one week in the presence of EGF and
FGF2. The percentage of Nestin-positive cells was not
altered (without: 82.2 + 11.7%; NaClOs: 85.6 + 15.5%; n=6;
Figure 4A,D). In contrast, the relative number of PIII-
Tubulin-positive neurons was significantly increased upon
NaClO; treatment (without: 1.3 +0.5%; NaClOs: 3.2 + 1.0%;
n=>5; P=0.014; Figure 4B,E). Finally, we did not observe
changes in the percentage of Caspase3-positive cells under-
going apoptotic cell death (without: 1.03 +0.36%; NaClOs3:
1.08 + 0.44%; n = 4; Figure 4C,F).

Next, we added 1 pM BrdU for 1 h after one day and
after one week to investigate the overall proliferation rate.
Interestingly, the relative number of BrdU-positive cells
was not changed for either time point investigated (with-
out 1div: 6.3 +0.5%; NaClO3 1div: 7.1 + 1.1% (n = 3); with-
out 7div: 25.4+8.4%; NaClOz 7div: 33.5+2.2%; (n=5);
Figure 4G,I), indicating that the S-phase entry was not
affected by NaClO3. We next analyzed both the percent-
age of pH3-positive cells after one day and their pH3
staining pattern, to assay for the G2- and M-phase
(Figure 4H-H”) [28]. The relative amount of pH3-positive
cells was not affected by NaClO; (without: 3.6 +0.6%;
NaClO3: 4.3+1.0%; n=3; Figure 4J). However, signifi-
cantly more cells remained in the G2-phase after NaClO3
addition, while only a minority of pH3-positive cells pro-
ceeded into the M-phase (without G2: 66.0+1.6%;
NaClO; G2: 82.6+1.7%; (n=4; P=0.0002); without M:
34.0+1.6%; NaClO3 M: 17.4+1.7%; (n=4; P=0.0002);
Figure 4]). These data indicate that NPCs grown in the
presence of NaClOj; display a G2-phase arrest.

DMEM || Chlorate

473HD RPTPB

Figure 2 Sodium chlorate efficiently reduces the expression level of the sulfation-dependent 473HD-epitope. (A) Western blot analysis of
neurosphere detergent extracts, showing a reduced 473HD expression level upon NaClOs treatment. The expression level of different RPTPR/C isoforms,
known 473HD carrier proteins, did not appear to be changed in the presence of NaClOs. (B) Immunohistochemical detection of the 473HD-epitope
and RPTPRB/C isoforms on neurosphere cryosections confirmed the reduced 473HD expression levels in NaClOs-treated cultures. Here, the
immunoreactivity for the 473HD carrier proteins seemed to be enhanced. Hoechst 33528 was used to visualize the cell nuclei. Scale bar: 50 pm.
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Figure 3 Sodium chlorate affects clonal neurosphere formation from primary spinal cord cells. (A, B) Neurospheres were grown under
clonal conditions in the presence of EGF and FGF2. The addition of NaClOs resulted in smaller neurospheres in comparison to the solvent control. (C)
Moreover, the quantification of neurospheres revealed a significantly reduced number of neurospheres in the presence of NaClOs (n=5; P <0.05). (D)
Consistent with this observation, the total cell number in high density cultures was strongly reduced upon NaClOs treatment after one week (n=4; P
<001). (E) Analysis of EGF- and FGF2-dependent neurosphere formation showed that, under both growth factor conditions, the addition of NaClO;
resulted in a significantly smaller number of neurospheres (n=3; P <0.05 for both conditions). (F) Using neurosphere size, based on the neurosphere
diameter, in the presence or absence of NaClO5, the neurospheres were sorted into different categories. The size distribution histogram shows that
NaClO5 treatment led to a higher number of small neurospheres. However, some large neurospheres were still detectable. Scale bar: 100 um.

Sodium chlorate affects Erk-signaling
To gain first insights into potential molecular mechanisms

was not changed, we observed increased levels of phos-
phorylated Erk1/2 (Figure 5B). Moreover, the overall expres-

mediating the cell biological influence of NaClO3 on spinal
cord NPCs, we analyzed the activation levels of Erk1/2 and
Akt, two effector molecules downstream of tyrosine kinase
receptors. For that purpose, we used neurospheres from
high density cultures grown in the presence of either EGF
and FGF2 or FGF2 alone. Both conditions were additionally
supplemented with heparin. The addition of NaClO;
resulted in a reduced expression of the 473HD epitope
(Figure 5A), confirming the functionality of NaClOs in that
experiment. While the level of phosphorylated Akt (pAkt)

sion level of the EGFR in the neurospheres was reduced
upon NaClO; treatment (Figure 5C). This was in line with
the increased percentage of neurons in the presence of
NaClOs.

Sodium chlorate affects neuron numbers under differentiating
conditions

Since CS-GAG chains regulate the differentiation of cor-
tical NPCs [4-6], we next analyzed the impact of NaClO3
on spinal cord NPC differentiation upon growth factor
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Figure 4 Sodium chlorate induces G2 arrest of spinal cord neural precursor cells. (A-F) Neurospheres grown as high density culture in the
presence of EGF and FGF2 for one week were dissociated, and single cells were plated for 2 h on a poly-DL-ornithine substrate for further
analysis. The percentage of Nestin-positive cells was not altered upon NaClO5 addition (n=6). In contrast, the relative number of lll-Tubulin-
positive neurons was significantly enhanced (n=5; P <0.05). NaClO5 did not affect the proportion of Caspase3-positive cells (n=4). (G, 1) BrdU
incorporation analysis was performed after one day and after seven days. NaClOs did not affect the BrdU incorporation rate for either time point
investigated (1div: n=4; 7div: n=5). (H, J) Moreover, the relative number of pH3-positive cells was also not changed in response to NaClOs.
Strikingly, the percentage of cells in the G2 and M-phase of the cell cycle was increased and decreased, respectively (n=4; P=0.0002). Hoechst
33528 was added to visualize the cell nuclei. Scale bar: 25 um (H-H"), 50 um (A, B, C, G).

withdrawal. For this purpose, neurospheres grown as high  specific markers Nestin, GFAP, O4 and BIII-Tubulin. The
density cultures were dissociated and single cells were ini-  general differentiation level was low after four days, since
tially plated on a poly-DL-ornithine/laminin substrate for  the majority of cells were still Nestin-positive (Additional
four days in the presence of 1 % FCS. The differentiation  file 2: Figure S2A). However, several GFAP-positive astro-
was immunocytochemically investigated using the cell type  cytes as well as PIII-Tubulin-positive neurons and O4-
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Figure 5 Sodium chlorate increases Erk1/2 activation levels in primary neurospheres. (A) Treatment of primary neurospheres grown either
in the presence of EGF and FGF2 or FGF2 alone with NaClO5 reduced the expression level of the sulfation-dependent 473HD epitope. (B) In
contrast, the phosphorylation of Erk1/2 (pErk1/2) was enhanced in response to NaClOs. However, NaClOs did not affect the phosphorylation of
Akt (pAkt), another downstream effector molecule of tyrosine kinase receptors. (C) In line with an enhanced spontaneous neuronal differentiation,

positive immature oligodendrocytes were also present
under both conditions (Additional file 2: Figure S2A, B).
Again, counting for the different cell types revealed that the
treatment with NaClO; resulted in a higher percentage of
BII-Tubulin-positive neurons (without: 5.5 + 1.6%; NaClOs:
8.8 +3.4%; n=7; P=0.041) (Additional file 2: Figure S2D).
In contrast, neither astroglial nor oligodendroglial differen-
tiation were significantly affected after four days of differen-
tiation (GFAP without: 3.3+2.6%; GFAP with NaClOs:
5.5 +4.2%; n =7; O4 without: 1.9 + 0.6%; O4 with NaClOs:
1.6 + 1.2%; n =7) (Additional file 2: Figure S2C, E).

Sodium chlorate affects morphological and functional
maturation of neural precursor cell-derived neurons

The observation that neuronal differentiation was
enhanced in the presence of the sulfation inhibitor NaClO3
prompted us to further examine neuronal maturation with
regard to morphology. To address that issue, we plated dis-
sociated primary neurosphere cells under differentiating
conditions and analyzed the neuronal morphology after
four days in terms of neurite number, length of the longest
neurite and basal soma size. Figure 6A,B shows representa-
tive photomicrographs of neurons grown in the absence
and presence of NaClO3;. The mean number of neurites
was not affected by NaClO; (without: 1.95 +0.17; NaClOs:
1.88 £ 0.19; n=6; Figure 6C). In contrast, the mean length
of the longest neurite was significantly reduced upon
NaClO; treatment (without: 3855+94.6; NaClOs:
306.8 +77.8; n=6; P =0.044; Figure 6D). The average soma
size was also not changed (without: 1,426 +218; NaClOs:
1,454 £ 253; n = 6; Figure 6E).

Next, we analyzed if NaClO; also affects electrophysio-
logical properties of NPC-derived neurons. Thus, we per-
formed whole cell patch-clamp recordings of NPC-derived
neurons. To take potential neuronal subpopulations into
consideration, we specifically analyzed neurons with a tri-
angular cell soma (Figure 6F). Upon supra-threshold
depolarization, the neurons usually responded with an

inward current (sodium current component) followed by a
prolonged outward current (potassium current component).
Following culture in NaClOs, peak sodium currents were
strongly decreased in comparison to cells cultured under
control conditions (Figure 6F). To ensure that these differ-
ences were not due to differences in cell size, we first deter-
mined the cell capacitance and did not observe any changes
in response to NaClOj treatment (without: 13.3+2.7 pF;
NaClO;+12.2+1.3 pF; n=5 preparations; Figure 6Q).
Then, we measured both the sodium inward and potassium
outward current and normalized both components to the
cell capacitance, yielding current densities. We found that
the sodium current density was significantly reduced in
the presence of NaClOj3 (without: -17.5 +2.9 A/F; NaClOs: -
6.3+3.6 A/F;, n=5 preparations; P <0.001; Figure 6H). In
contrast, the potassium current density was not significantly
changed (without: 234 +89 A/F; NaClOs: 16.8+3.0 A/F;
n =5 preparations; Figure 6H).

To further analyze the influence of NaClO3; on neur-
onal maturation, we extended the differentiation period
for another three days. After that, we first determined
the relative number of Caspase3-positive cells to investi-
gate whether potential differences might be due to
changes in the rate of apoptotic cell death. However, we
did not notice any differences in the percentage of
Caspase3-positive cells (Figure 7A,B). Next, we counted
the number of MAP2-positive cells and found a signifi-
cant increase in the percentage of MAP2-positive cells
upon NaClO; treatment (without: 2.3+ 0.5%; NaClOs:
84+3.6% (n=4; P=0.015)). Finally, we analyzed the
polarization of the neurons in our differentiation assay
by staining for MAP2 (dendritic compartment) in com-
bination with Tau (axonal compartment). While under
control conditions, a substantial number of MAP2-
positive cells also had a Tau-positive axon; the relative
number of clearly polarized neurons in the presence of
NaClO; was significantly reduced (without: 25.9 + 6.3%;
NaClO3 8.0 +2.1%; (n=4; P=0.002)). We also observed
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Figure 6 Sodium chlorate affects morphological and functional maturation of neural precursor cell-derived neurons. (A, B) In order to
analyze the neuronal morphology, the Blll-Tubulin immunoreactivity was visualized using diaminobenzidine. In the control situation the neurons
often displayed a multipolar morphology with long neurites. Upon NaClOs treatment the neurites appeared to be shorter. (C-E) To assess the
morphological maturation, the neurite number, the length of the longest neurite and the soma size were measured. The latter two are given in
arbitrary units. While the neurite number and the soma size were not altered in the presence of NaClO3 (n=6), the mean length of the longest
neurite was significantly reduced (n=6; P <0.05). (F) Whole cell patch-clamp recordings of individual NPC-derived neurons were performed
under voltage clamp conditions. To take neuronal subpopulations into account, only neurons exhibiting a triangular soma shape were analyzed.
Upon depolarization, the neurons responded with a brief sodium inward current followed by a delayed potassium outward current. The inward
component was strongly reduced in the presence of NaClOs. (G) The determination of the cell capacitance revealed no changes in the overall
cell size upon NaClOs treatment (n=5 preparations). (H) Analysis of the two current components expressed as current density clearly showed a
reduced sodium current density in the presence of NaClO5 (n=5 preparations; P <0.001). In contrast, the potassium current density was not
affected (n=5 preparations). Scale bar: 25 um.
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Figure 7 Sodium chlorate attenuates neuronal polarization of neural precursor cell-derived neurons. (A-D, G) Photomicrographs of
differentiated NPCs stained for cleaved Caspase3, MAP2, and Tau after seven days of differentiation. (A-D) NaClO; treatment did not result in an increased
apoptotic cell death after seven days. However, in line with an increased percentage of Bli-Tubulin-positive neurons after four days, the relative number of MAP2-
positive cells was enhanced in response to NaClOs. (E) The quantification of MAP2-positive neurons revealed a significant increase in the relative amount of
neurons in NaClO; treated cultures (n=4; P=0015). (F, G) Interestingly, the percentage of Tau-positive cells among MAP2-positive neurons was strongly reduced
after NaClOs treatment (n=4; P=0002). To visualize the nuclei the cells were counterstained with Hoechst 33528. Scale bar: 50 pm (A-D), 25 um (G).

a similar phenomenon in two independent experiments
after a ten-day differentiation period (data not shown).

Discussion

GAG chains on proteins of the extracellular matrix or
on membrane bound cell adhesion molecules are com-
plex carbohydrates that participate in many biological
processes during development and in adulthood, in part
via their highly specific sulfation patterns. Sulfation of
GAGs is performed by sulfotransferases that have been
shown to be particularly relevant in developmental

processes [8,29-34]. In this study, we initially investi-
gated the expression of the 473HD-epitope, a unique
CS-motif, during embryonic spinal cord development
and found that it is expressed at late embryonic ages. Its
pronounced expression within the NPC compartment,
moreover, suggests a functional role of sulfated GAG
chains in the regulation of spinal cord NPC biology.
Along these lines it has been shown that highly sulfated
complex GAG structures are expressed by cortical NPCs
[35-37] and regulate proliferation and differentiation of
embryonic and adult cortical NPCs [4-7,38]. Thus, we
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analyzed the role of changes in sulfation on the prolif-
eration and differentiation potential of mouse embryonic
spinal cord NPC using NaClOj; as a potent inhibitor of
eukaryotic sulfation reactions. Low concentrations of
NaClO3 (2 mM to 5 mM) preferentially inhibit sulfation
of CS-GAGs, whereas higher concentrations (15 mM to
30 mM) are required to inhibit sulfation of HS-GAGs as
well [39]. We used a concentration of 30 mM, to assure
an almost complete sulfation blockage of both CS-GAGs
and HS-GAGs. To monitor the effectiveness of NaClOs,
we analyzed the expression level of the 473HD-epitope,
and observed an almost complete reduction of the epi-
tope after NaClOj3 treatment. This observation is in line
with a former study demonstrating that the 473HD-
epitope depends on a distinct sulfation pattern [40].
Some residual 473HD immunoreactivity in the western
blot as well as in the immunohistochemical analyses is
likely due to the fact that NaClO3 might not affect every
neurosphere cell as soon as the neurospheres reach a
certain size. However, since the total amount of the car-
rier protein RPTPB/{ does not change, our data prove
the functionality of NaClOj3 to specifically affect sulfa-
tion events.

We next analyzed clonal neurosphere formation cap-
acity from E13.5 spinal cord NPCs. Treatment of neuro-
sphere cultures with 30 mM NaClO; resulted in
significantly fewer and smaller neurospheres. This effect
was independent from the growth factor used to propa-
gate the neurospheres (EGE, FGF2 or both; Figure 4 C-E).
Looking at the diameter of the spheres, it became obvious
that there are more small-diameter neurospheres and
fewer large-diameter neurospheres when the cultures
were treated with NaClO; (Figure 4A,B,F). This
phenomenon has been observed previously for the em-
bryonic telencephalic neurospheres [8]. The reasons for
the altered neurosphere growth could be that NPCs
within the neurosphere divide more slowly in the pres-
ence of NaClO;, NPCs die more frequently; or NPCs have
a higher differentiation capacity, and therefore NaClO;
might affect stem or precursor cell maintenance. Our
BrdU incorporation analysis did not reveal any changes in
the S-phase of the cell cycle. However, while the relative
number of pH3-positive cells present in the G2-phase of
the cell cycle was significantly enhanced, the percentage
of M-phase cells was significantly decreased, indicating a
potential G2-phase arrest in the presence of NaClOs. Al-
though a G2-arrest is a common phenomenon preceding
apoptotic cell death, especially in cancer cells [41], we did
not observe an increased percentage of Caspase3-positive
cells, Thus, it is unlikely that NaClO; affected cell death
rates in our culture system. Besides the difference with re-
gard to the G2/M-phase of the cell cycle, we also docu-
mented a significant increase of PIII-Tubulin-positive
young neurons in response to NaClOz treatment.
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Furthermore, the overall expression level of EGFR in the
neurosphere cultures was reduced. This is also in line
with an increased percentage of PIII-Tubulin-positive
neurons, since the acquisition of the EGFR is generally
considered a hallmark for the developmental switch from
neurogenic NPCs towards gliogenic NPCs [42]. However,
based on our data, we conclude that NaClO3 primarily
affects spinal cord NPC proliferation by changing the cell
cycle kinetics. This results in a higher number of neurons
already under proliferative conditions. However, it
remains unsolved whether NaClOj; truly promotes neuro-
genic differentiation. It might be that the enhanced per-
centage of neurons simply reflects the reduced
proliferation capabilities of the surrounding cells.

Regarding potential molecular mechanisms, we ini-
tially reasoned that the suppression of sulfation might
compromise growth factor signaling, leading to changes
in the activation levels of downstream effector mole-
cules such as Erk1/2 and Akt. Surprisingly, we observed
an increased Erkl/2 activation in the presence of
NaClOs. Yet an increased Erk1/2 activation has already
been reported previously in the context of a G2 arrest
in different cancer cell lines [43,44]. It is unlikely that
the increased Erkl/2 activation depends on increased
receptor activation, because the lack of sulfation should
result in a reduced growth factor signaling strength.
Along these lines, we recently showed that the enzym-
atic degradation of CS-GAGs compromises FGF signal-
ing in cortical neurosphere cultures, resulting in a
reduced MAP kinase activation [5]. Here, we think that
NaClO3 might reduce the activation levels of phospha-
tases through a yet unknown mechanism. In this con-
text, it is noteworthy that RPTPP/({ bears sulfated CS-
GAGs [25] and regulates Erkl/2 activation levels in
human keratinocytes [45]. Therefore, the sulfation sta-
tus of RPTPP/{ might have a critical influence on its ac-
tivation level and as a consequence also on the Erk1/2
activation levels.

Our laboratory has recently shown that degradation of
CS-GAGs from telencephalic NPCs using ChABC
results in a pronounced glial differentiation at the ex-
pense of neuronal cell types [6]. With regard to spinal
cord NPCs, we observed a higher proportion of neuronal
cells already under proliferative conditions. Under differ-
entiating conditions we documented an enhanced rela-
tive number of BIII-Tubulin-positive cells after four days
and MAP2-positive cells after one week following
NaClO; treatment. These data are in line with previous
studies demonstrating an increased neuronal differenti-
ation of mouse embryonic stem cells upon siRNA
mediated knock down of either the PAPS transporters 1
and 2 or HS-specific sulfotransferases [46]. In contrast
to the increased percentage of neurons, the relative
number of glial cells was not affected.
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To further elucidate the phenotype of the BIII-Tubulin-
positive cells, we took a closer look at the morphology of
these cells and valued the morphology as a level of matur-
ation. The spinal cord NPC-derived neurons exhibited no
changes with respect to soma size and total primary neur-
ite number upon NaClOj; treatment. But they significantly
differed in the length of their longest neurite. This was
surprising, since CSPGs and HSPGs are primarily known
for their inhibitory influence on neurite outgrowth, par-
ticularly under pathological conditions [10,47]. Moreover,
CS-GAGs have recently been shown to influence the
morphology of NPC-derived neurons in terms of neurite
number, length and branching [4,48]. Yet there is growing
evidence that specific CS-GAGs also promote neurite out-
growth depending on both the mode of their presentation
(that is, homogenous substrate or alternating substrate)
and on the neuronal cell type [13,25,49]. Thus, we believe
that our data hint towards an attenuated maturation of
spinal cord NPC-derived neurons in the presence of
NaClO3 in vitro. In line with this hypothesis, we also
documented a strongly reduced neuronal polarity after
seven and ten days in culture. To check whether this
delayed morphological maturation is also relevant at a
functional level, we analyzed the differentiated neurons
grown from NaClOs-treated dissociated cultures in com-
parison with the control group using whole cell patch-
clamp recordings. We determined that the overall cell
capacitance of the cells was not changed. This is in line
with the fact that the soma size was not changed either.
However, we observed a significantly reduced sodium
current density, while the potassium current density
remained unaltered. Lower sodium currents suggest a
delay in functional neuronal maturation, because sodium
currents usually increase upon differentiation of neuronal
precursors during embryogenesis [50]. Furthermore, neur-
ite outgrowth and sodium channel- dependent excitability
have previously been shown to be tightly coupled during
functional neuronal maturation [51]. Interestingly, the
addition of FGF2 to rat postnatal hippocampal neurons
significantly enhances the sodium current density, demon-
strating a growth factor signaling-dependent regulation
[52]. This might be mediated by highly sulfated GAG
chains. In this context, it is noteworthy that we recently
demonstrated changes in spontaneous synaptic activity of
primary hippocampal neurons upon ChABC-mediated
CS-GAG degradation [53].

Conclusions

Based on our data, we believe that normal sulfation levels
of CSPGs and HSPGs during spinal cord histogenesis pro-
mote cellular maturation in general and neuronal matur-
ation in particular. Since both CSPGs and HSPGs also
show a pronounced expression under pathological condi-
tions, our data particularly highlight the need for a better
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understanding of the impact of specific PGs and their sul-
fation patterns for neural development and regeneration.

Additional files

Additional file 1: Figure S1. CS-GAGs are expressed during early
gliogenesis of mouse spinal cord development. (A-E) Photomicrographs
of frontal spinal cord sections stained against the 473HD epitope. At the
beginning of neurogenesis (E9.5) the 473HD epitope was mainly
expressed in the meninges and the surrounding parenchyma. Towards
the end of neurogenesis (E12.5) the 473HD epitope appeared at the
ventral central canal. One day later the immunoreactivity has expanded
into the prospective ventral white matter and to a less extent into the
dorsal spinal cord. Note that both the floor plate and the roof plate
lacked any immunoreactivity. At E15.5 the immunoreactivity was even
stronger in the ventral spinal cord and still low in the dorsal part.
Another three days later the 473HD epitope was evenly distributed
throughout the whole spinal cord except for the region around the
central canal. To visualize the nuclei, the cells were counterstained with
Hoechst 33528. Scale bar: 50 um (A, B), 100 um (C-D).

Additional file 2: Figure S2. Sodium chlorate promotes neuronal
differentiation of spinal cord NPCs. (A, B) After one week in the presence
of EGF and FGF2 neurospheres were dissociated, and the differentiation
capacity was immunocytochemically analyzed using cell type specific
markers. The overall differentiation was low, since about 75% of all cells
still expressed the NPC marker Nestin after that time period. (C) The
quantification of GFAP-positive astrocytes showed no differences
between the NaClO3 and control conditions (n=7). (D) However, the
number of Blll-Tubulin-positive neurons was significantly increased in the
presence of NaClOz (n=7; P <0.05). (E) The amount of O4-positive
immature oligodendrocytes was not changed (n=7). Hoechst 33528 was
added, to visualize the cell nuclei. Scale bar: 50 pm.
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