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Context-dependent functions of specific
microRNAs in neuronal development
Fen-Biao Gao

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that regulate multiple developmental processes at the post-
transcriptional level. Recent rapid progresses have demonstrated critical roles for a number of miRNAs in
neuronal development and function. In particular, miR-9 and miR-124 are specifically expressed in the mamma-
lian nervous system, and their respective nucleotide sequences are 100% identical among many species. Yet,
their expression patterns and mRNA targets are less conserved throughout evolution. As a consequence, these
miRNAs exhibit diverse context-dependent functions in different aspects of neuronal development, ranging from
early neurogenesis and neuronal differentiation to dendritic morphogenesis and synaptic plasticity. Some other
neuronal miRNAs also exhibit context-dependent functions in development. Thus, post-transcriptional regulation
of spatial and temporal expression levels of protein-coding genes by miRNAs contributes uniquely to the proper
development and evolution of the complex nervous system.

Background
MicroRNAs (miRNAs) are small, noncoding RNAs (21
to 24 nucleotides) that are processed from hairpin struc-
tures derived from endogenously transcribed primary
miRNAs (pri-miRNAs) [1,2]. As part of Argonaute com-
plexes, these small RNAs regulate gene expression at
the post-transcriptional level through imperfect base-
paring with specific sequences, located mostly in the 3′
UTRs and, in some cases, in the 5′ UTRs or the coding
regions [3-6]. Each miRNA is predicted to regulate up
to hundreds of mRNAs [7]. These miRNA-target inter-
actions often result in mRNA degradation but, under
certain circumstances, may also increase the translation
of some target mRNAs [6,8,9].
Since the first miRNA was discovered in Caenorhabdi-

tis elegans in 1993 [10], and the second miRNA along
with its evolutionary conservation in 2000 [11,12], hun-
dreds of miRNAs have been identified. miRNAs have
been implicated in almost all aspects of cellular pro-
cesses, including developmental timing, tumorigenesis,
immunity, neuronal development, and neurodegenera-
tion [13-18]. These regulatory small RNAs can function
as developmental switches or fine-tuning systems to
ensure robustness [19,20]. In some other cases, loss of

individual miRNAs does not seem to lead to any gross
developmental defects but may reveal specific functions
under sensitized genetic backgrounds [21].
In the nervous system, recent studies in several model

organisms demonstrate critical roles for a number of
miRNAs in neuronal development or function. For
instance, Lsy-6 and miR-273 are engaged in a feedback
loop in specifying the cell fate of two chemosensory
neurons in C. elegans [22]. miR-7 promotes photorecep-
tor neuron differentiation through modulating compo-
nents in the epidermal growth factor receptor signaling
pathway in Drosophila [23]. In mammals, miR-134 plays
a prominent role in regulating dendritic spine morpho-
genesis through LIM domain kinase 1 (Limk1) [24] and
members of the miR-200 family are involved in the
terminal differentiation of olfactory precursors [25].
Interestingly, miR-134 also regulates sirtuin 1 (SIRT1)-
mediated synaptic plasticity and memory formation [26]
and embryonic stem cell differentiation [27], suggesting
miRNAs can exert developmental and cellular context-
dependent functions. Consistent with this notion, multi-
ple functions of miR-132 have been revealed. miR-132 is
regulated by the cAMP response element binding pro-
tein (CREB) and in turn affects neurite outgrowth
through the Rho family GTPase activating protein
p250GAP [28]. miR-132 also modulates the circadian
clock located in the suprachiasmatic nucleus [29] as well
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as antiviral innate immunity in monocytes and primary
lymphatic endothelial cells [30]. Moreover, miR-138 is
involved in both spine morphogenesis [31] and cardiac
patterning [32].
In this review, I will focus on miR-9 and miR-124, two

miRNAs that are specifically expressed in the mamma-
lian nervous system. They are highly conserved at the
nucleotide sequence level in different species yet exert
diverse context-dependent functions through different
mRNA targets. Thus, as the most extensively studied
neuronal miRNAs, their roles in various aspects of neu-
ronal development in different species will serve as an
excellent case study to elucidate the functional conser-
vation and divergence of neuronal miRNAs during
evolution.

miR-9 and miR-124: mammalian brain-specific
miRNAs
miR-9 (also known as miR-9a in Drosophila) was first
identified in Drosophila [33] and its authenticity and
conservation were confirmed by its identification in
mouse brains [34-36]. miR-9 is highly conserved at the
nucleotide sequence level from flies to humans but not
in C. elegans. In Drosophila embryos, miR-9 is highly
expressed in ectodermal epithelial cells, with little or no
expression in the central nervous system [37,38]. In con-
trast, miR-9 in rodents is specifically expressed in the
brain but not other tissues; in the brain, it is broadly
expressed in neuronal precursors and also at lower
levels in some postmitotic neurons [34-36]. Thus,
although this miRNA is highly conserved at the nucleo-
tide level, its tissue-specific expression pattern is not.
In mammals, miR-9 is processed from three precur-

sors that are encoded by three genes located on different
chromosomes. However, in flies, there is only one miR-9
gene. In mouse embryos at embryonic day 10.5 (E10.5),
pre-miR-9-2 is expressed at a much higher level than
pre-miR-9-3, and pre-miR-9-1 expression is barely
detectable [39]. Similarly, pre-miR-9-2 is expressed at
high levels in human neural progenitor cells (hNPCs)
derived from human embryonic stem cells (hESCs),
while pre-miR-9-1 is almost undetectable [40]. In the
developing mouse brain or zebrafish nervous system,
miR-9 is also encoded by multiple genes and is broadly
expressed, mostly in proliferating progenitor cells but it
is also detectable in differentiated neurons [41-44]. It
remains to be determined whether different miR-9 pre-
cursors may be expressed through distinct transcrip-
tional controls in different subset of cells or at slightly
different developmental stages. If that is the case, the
presence of multiple genes encoding the same mature
miRNA may confer another layer of regulation.
miR-124 (also known as miR-124a) was first identified

as one of the mouse brain-specific miRNAs [34], and its

nucleotide sequence is conserved from Aplysia, Droso-
phila, and C. elegans to mammals [35,37,45,46]. It is the
most abundant miRNA in the brain, where it accounts
for an estimated 25% to 48% of all miRNAs [34]. miR-
124 is upregulated during neuronal differentiation of
certain cell lines and hESCs and during mouse embryo-
nic brain development [35,36,40,47]. miR-124 is widely
expressed in virtually all postmitotic neurons in the
adult mouse brain, but its expression is relatively low in
the ventricular zones in the embryonic mouse brain
[41]. Similarly, miR-124 is expressed in all differentiating
cells throughout the larval zebrafish brain and retina
[42] and in all differentiating and mature neurons in
chick spinal cord [48,49]. Interestingly, in Aplysia, miR-
124 is expressed at a high level in sensory neurons but
is almost undetectable in motor neurons [45], suggesting
functional divergence of this miRNA in different species.
Like miR-9, miR-124 is encoded by one gene in some
other model organisms but by three genes located on
three different chromosomes in mammals. Although,
like many other miRNAs, the nucleotide sequence of
miR-124 precursors (pre-miR-124) is also poorly con-
served in different species, they all maintain the stem-
loop structures that produce the highly conserved
mature miR-124.

miR-9 in early neurogenesis
Detailed in situ hybridization reveals a dynamic expres-
sion profile for miR-9 during mouse corticogenesis. One
of the most striking features is the reciprocal gradient of
miR-9 and forkhead box protein G1 (foxg1) mRNA
expression in E12 developing telencephalon [39]. Foxg1,
a transcription factor that promotes the proliferation of
cortical progenitor cells [50], is present throughout the
telencephalon, but its expression gradually decreases in
the medial pallium, where miR-9 is intensely expressed,
raising the possibility that miR-9 may negatively regulate
foxg1 expression [39]. Indeed, the foxg1 3’ UTR contains
an evolutionarily conserved miR-9 binding site and
seems to be a direct target of miR-9. In P19-derived
cells or in E12.5 neocortex, miR-9 knockdown increases
Foxg1 expression, while overexpression of miR-9
decreases the protein levels of Foxg1 but not Nr2E1
(Nuclear receptor subfamily 2, group E member 1; also
known as the human homologue of the Drosophila tail-
less gene (TLX)). Such a miRNA-target interaction sup-
ports the notion that miR-9 promotes the generation of
Cajal-Retzius cells in the medial pallium of developing
telencephalon [39] (Figure 1A). It will be interesting to
confirm such a regulatory role for miR-9 in this devel-
opmental process in vivo using genetic approaches.
In zebrafish, miR-9 seems to affect early brain pattern-

ing through a different set of targets. Loss of both
maternal and zygotic Dicer in zebrafish does not affect
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axis formation and differentiation of different cell types
but causes abnormal morphogenesis of the developing
brain [51], suggesting individual miRNAs may play fine-
tuning functions. Indeed, miR-9 is widely expressed in
neural progenitor cells in the developing zebrafish
neural tube but is absent at the midbrain-hindbrain
boundary (MHB) [44], an organizing center to specify
the tectum at its rostral side and the cerebellum at its
caudal side [52]. miR-9 seems to simultaneously target
several components in the fibroblast growth factor sig-
naling pathway, which is highly active in the MHB and
restricts its patterning activity [44] (Figure 1B). miR-9

also regulates the expression of Her5 and Her9 during
neuronal differentiation [44]. Both loss- and gain-of-
function studies reveal that miR-9 restricts the organiz-
ing activity of the MHB and promotes neurogenesis in
the midbrain-hindbrain region near the MHB.
The role of miR-9 in early neurogenesis is drastically

different in Drosophila (where the gene is called miR-
9a). Although the miR-9 nucleotide sequence is 100%
conserved among many species, miR-9a shows little
expression in the nervous system of developing Droso-
phila embryos; rather, it is highly expressed in ectoder-
mal epithelial cells and in wing disc cells but not in

Figure 1 Context-dependent functions of miR-9 in neurogenesis. (A,B) In the developing brains of zebrafish (A) and mice (B), miR-9 is
expressed in neural progenitor cells (NPCs) and promotes neurogenesis by downregulating different suppressors of neuronal differentiation. (C)
During early neurogenesis in Drosophila embryos, miR-9 is not expressed in sensory organ precursors (SOPs) that eventually give rise to sensory
neurons and other cell types. Instead, it is expressed in non-SOP cells, including those adjacent to the SOP in the pro-neural cluster, to suppress
the residual expression of Sens, an activator of proneural genes in the process of lateral inhibition. Fgf, fibroblast growth factor; Fgfr, fibroblast
growth factor receptor; Foxg1, forkhead box protein G1; MHB, midbrain-hindbrain boundary.
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sensory organ precursor (SOP) cells [37,38]. Thus, tran-
scriptional regulation of miR-9 expression is not evolu-
tionarily conserved. SOPs, which give rise to sensory
neurons and supporting glial cells, are generated
through a process called lateral inhibition, which
involves the Notch signaling pathway and has been used
as a model system for studying early neurogenesis [53].
Loss of miR-9a does not affect the viability of the
mutant flies but increases the production of SOPs [38]
(Figure 1C). The effects of miR-9 on SOP specification
are not highly penetrant, again supporting the notion
that many miRNAs are not absolute developmental
switches. In flies, unlike in vertebrates, key targets of
miR-9 are dLMO (Drosophila LIM only protein) [54,55]
and Senseless (sens) [38,55] (Figure 1C), a zinc finger
transcription factor downstream of Notch [56]. Since
miR-9 binding sites in the sens 3′ UTR are not con-
served in mammals, the shift in miR-9 targets may
explain in part its diverse functions in different model
organisms [57].

miR-9 in stem cell-derived neural progenitor cells
miR-9 is upregulated during in vitro neural differentia-
tion of mouse ESCs [58] and adult neural stem/pro-
genitor cells [59], and during the maturation of hNPCs
derived from hESCs [40]. Thus, miR-9 is expected to
modulate the cellular behavior of stem cell-derived
NPCs. Indeed, manipulation of miR-9 activity in
mouse ESCs in vitro affects the ratio of differentiated
neurons versus glia cells [58]. Similarly, overexpression
of miR-9 in adult NPCs promotes neuronal differentia-
tion and migration. However, inhibition of miR-9
activity does not affect the neuronal differentiation of
adult NPCs [59], even though it impairs the generation
of Cajal-Retzius neurons in embryonic mouse brains
[39]. This discrepancy could be explained by the differ-
ence in the cellular context or some other unknown
reasons. One target that mediates the effects of miR-9
overexpression on adult NPCs is TLX, a nuclear recep-
tor required to maintain self-renewal of adult NPCs
[59]. Interestingly, the transcription of pri-miR-9-1 also
seems to be regulated by TLX, thus forming a poten-
tial feedback regulatory loop. However, if the relative
levels of three pre-miR-9 genes in adult NPCs are
similar to those in embryos, the change in total mature
miR-9 level as regulated by this loop would be mar-
ginal because pre-miR-9-1 accounts for less than 5% of
miR-9 precursors [39].
During neural differentiation of hESCs, miR-9 is not

detectable in embryoid bodies and rosette structures; its
expression is turned on at the onset of hNPC formation
and increases gradually during hNPC maturation [40].
Inhibition of miR-9 activity in early hNPCs enhances
migration and reduces proliferation without precocious

differentiation. In this case, stathmin, which promotes
microtubule instability [60], seems to be a key target
required to mediate the effect of loss of miR-9. Partial
suppression of stathmin by small interfering RNA res-
cues the effects of loss of miR-9 on the migration of
early hNPCs in vitro and in vivo when transplanted into
mouse embryonic brains or adult brains of a mouse
model of stroke [40]. Thus, miR-9 may play distinct
roles in NPCs of different developmental stages and
origins.

miR-124 in neuronal differentiation
The striking upregulation of miR-124 during neuronal
differentiation [35,36] raises the possibility that this
most abundant brain-specific miRNA may play unique
functions during this process. Indeed, many targets of
miR-124 that positively or negatively regulate neuronal
differentiation have been identified. Ectopic expression
of miR-124 in HeLa cells suppresses the expression of a
large number of non-neuronal transcripts, leading to the
hypothesis that one of miR-124’s primary functions is to
maintain neuronal identity by downregulating non-neu-
ronal mRNAs [61]. Consistent with this notion, some of
these targets are upregulated in postmitotic rodent neu-
rons when miR-124 is knocked down, and miR-124
expression in non-neuronal cells and neural progenitor
cells is suppressed by the RE1 silencing transcription
factor (REST) [47]. Similarly, miR-124 directly targets
the mRNA of polypyrimidine tract-binding protein 1
(PTBP1), a global repressor of alternative splicing in
non-neuronal cells, leading to a more neuron-specific
alternative splicing pattern [62]. In chick spinal cord,
the mRNA of small C-terminal domain phosphatase 1
(SCP1) seems to be complementary to that of miR-124
in the developing spinal cord [49]. miR-124 also down-
regulates other endogenous targets during neuronal dif-
ferentiation, such as laminin g1 and integrin β1 in
developing chick spinal cord [48] and ephrin-B1 in
developing mouse cortex [63]. In the subventricular
zone of the adult mouse brain, miR-124 is upregulated
during the transition from transit-amplifying cell to neu-
roblasts, and its expression in neuroblasts increases
further at cell cycle exit [64]. During this process, the
high mobility group box transcription factor Sox9 seems
to be a key target of miR-124 [64]. Evidently, miR-124
regulates different targets during neuronal differentiation
in a cellular context-dependent manner.
Several miR-124-target interactions have been well

established, but their relevance to a discernable develop-
mental phenotype is less clear. miR-124 promotes neu-
ronal differentiation in developing chick spinal cord, as
shown by overexpression or 2′-OMe antisense knock-
down experiments [49]. However, a similar study using
the same assay system did not observe such an effect
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[48]. Although several reports indicate that ectopic over-
expression of miR-124 promotes neuronal differentiation
from progenitor cells [49,58,62-65], the precise roles of
endogenous miR-124 in this developmental process
remain to be further elucidated. In vitro acute knock-
down of miR-124 in ephrin-B1 (EfnB1)-/- NPCs modestly
inhibited their neuronal differentiation [63]. In vivo
knockdown of miR-124 in the subventricular zone of
adult mice decreased the number of newly generated
postmitotic neurons by 30% [64], suggesting an instruc-
tive role for miR-124 in promoting adult neurogenesis.
In contrast, genetic ablation of miR-124 in C. elegans
altered gene expression but did not result in any
obvious defects in sensory neuron differentiation [66].
More sensitive assays and readouts are needed to further
understand the subtle but apparently important func-
tions of miR-124 in neuronal differentiation, especially
using loss-of-function mutants in different model
organisms.

miR-9 and miR-124 in dendritic branching
Conditional knockout of Dicer in excitatory forebrain
neurons in mice reduces dendritic branch elaboration
[67]. In Drosophila, terminal dendritic branches of Dicer-
1 mutant sensory neurons exhibit growth defects [68],
and loss of Dicer-1 or Pasha in Drosophila olfactory pro-
jection neurons leads to a specific dendritic targeting
defect [69]. Although Dicer may process other classes of
RNAs, these findings raise the possibility that at least
some miRNAs participate in the molecular regulation of
dendritic morphogenesis. Indeed, both loss- and gain-of
function studies of cultured developing cortical or hippo-
campal neurons indicate a role for miR-132 in basal and
activity-dependent dendritic growth and branching
[28,70]. As the most abundant brain miRNA whose
expression persists throughout adult life, miR-124 seems
to promote neurite outgrowth in differentiating mouse
P19 cells, possibly in part by regulating members of the
Rho GTPase family [71]. However, ectopic expression of
miR-132 or miR-124 had no effect on dendritic growth
or arborization of hippocampal neurons that had been
cultured in vitro for 14 days [72]. The latter result could
be explained by the high levels of these miRNAs already
present in mature neurons in culture. The involvement
of the miR-124-target interaction in dendritic morpho-
genesis is further revealed by manipulating the 3′ UTR of
BAF53b, a key component of the ATP-dependent chro-
matin-remodeling complexes [73]. Loss of the miR-124
and miR-9* binding sites in the BAF53a 3′ UTR inhibited
activity-dependent dendritic growth in cultured hippo-
campal neurons, while expression of BAF53b with the
wild-type BAF53a 3′ UTR failed to produce such an inhi-
bition [73]. Thus, miR-124 downregulates BAF53a, which

in turn leads to increased activity-dependent dendritic
growth.
Ectopic expression of miR-124 in developing Droso-

phila sensory neurons suppresses dendritic branching
[68]. The different effects of miR-124 in P19 cells versus
fly neurons may reflect the difference in mRNA targets
in different cell types. However, the precise roles of
endogenous miR-124 in dendritic development await
further investigation once miR-124 mutant flies or
knockout mice become available. In contrast to miR-
124, ectopic expression of miR-9 in fly sensory neurons
increases dendritic branching [68], suggesting that dif-
ferent miRNAs can exert opposite effects on this devel-
opmental process through distinct subsets of target
mRNAs. Whether endogenous miR-9 in mammalian
neurons also regulates dendritic morphogenesis remains
to be seen.

miR-9 and miR-124 in synaptic plasticity and
brain function
Synaptic formation and plasticity play central roles in neu-
ronal connectivity and brain function, and miRNAs seem
to be well positioned to regulate this important process
[74]. Indeed, loss of Dicer in vivo not only reduces dendri-
tic branching but also affects spine morphology [67],
although the interpretation of this result is complicated by
the cell death phenotype caused by conditional loss of
Dicer in certain neurons [67,75,76]. Moreover, several
miRNAs have been implicated in spine morphogenesis
and synaptic plasticity in C. elegans, Drosophila, and
mammals, including miR-134 [24], let-7 [77,78], miR-284
[79], miR-1 [80], miR-138 [31], miR-206 [81], and
miR-125a [72].
This rapidly expanding list also includes miR-124,

which in Aplysia, in stark contrast to that in other
model organisms, does not seem to be expressed ubiqui-
tously and constitutively in all neurons [45]. In Aplysia
sensory-motor neuron co-culture, a model system for
studying short- and long-term memory [82], miR-124 is
rapidly downregulated by the neurotransmitter seroto-
nin. This downregulation is relevant to synaptic plasti-
city because manipulating miR-124 levels in sensory
neurons directly affects long-term facilitation at the sen-
sory-motor synapse [45]. One of the predicted mRNA
targets of miR-124 is CREB1, a transcriptional activator
required for long-term facilitation [83]. Indeed, the
expression of Aplysia CREB1 is directly inhibited by
miR-124, and miR-124 suppresses serotonin-induced
synaptic facilitation through downregulation of CREB1
[45]. The miR-124 binding site is conserved in the
mammalian CREB1 3′ UTR. Whether CREB-mediated
signaling and synaptic functions are regulated by miR-
124 in the mouse brain remains to be experimentally
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validated. Interestingly, miR-124 and other neuronal
miRNAs have a much shorter half-life than that in non-
neuronal cells and their abundance in mammalian neu-
rons is regulated by neuronal activity [84]. Further
investigation of the underlying mechanism will be of
great importance.
In the adult rat brain, miR-124 is significantly downre-

gulated after cocaine administration, suggesting that this
miRNA may be involved in cocaine-induced plasticity,
possibly through CREB, brain-derived neurotrophic fac-
tor (BDNF), or other potential targets [85]. Similarly,
miR-9 is expressed in supraoptic nucleus neurons and
striatal neurons in the rat brain, as detected by single-
cell PCR, and alcohol increases miR-9 expression in
both of these cell types [86]. miR-9 downregulates speci-
fic mRNA splice variants of the large conductance cal-
cium- and voltage-activated potassium (BK) channel,
contributing to the development of alcohol tolerance
[86]. Thus, the BK channel is a key target of miR-9 in
drug adaptation and adult brain plasticity.
The potential involvement of miRNAs in age-depen-

dent neurodegeneration is increasingly appreciated [18].
For instance, several miRNAs suppress the neurotoxicity
of atrophin 1 in spinocerebellar ataxia 1 (SCA1) patho-
genesis in a combinatorial manner [87]. miR-206 plays
an active role in delaying the disease progress of amyo-
trophic lateral sclerosis [81], a fatal disease caused by
motor neuron degeneration in which dysregulation of
the miRNA pathway may be one of the most significant
pathogenic mechanisms [88]. Interestingly, miR-9 is sig-
nificantly reduced in a genetic model of spinal motor
neuron disease [89]. Similarly, miR-9 levels are lower in
patient brains affected by Huntington’s disease [90], and
miR-29a/b-1 expression is reduced in the brains of
patients with sporadic Alzheimer’s disease [91]. Whether
these brain-specific miRNAs contribute to the pathogen-
esis of some age-dependent neurodegenerative diseases
remain to be further investigated.

Conclusions
Although a few miRNAs can function as developmental
‘switches’ similar to transcription factors to fundamen-
tally affect cell fate, such as in the specification of che-
mosensory neurons in C. elegans [19] and some aspects
of cardiovascular development [92], many other miR-
NAs, such as miR-9 and miR-124, individually exert a
more modest effect on neuronal development. Another
similarity between the two most extensively studied neu-
ronal miRNAs is their modest effects on gene expres-
sion, consistent with recent reports that many if not all
miRNAs mostly induce less than twofold changes in tar-
get gene expression [93,94]. Thus, these miRNAs may
serve as an important buffering system to ensure the
precision of gene regulation and tissue homeostasis in
developing and adult brains.
Both miR-9 and miR-124 are implicated in multiple

stages of neuronal development. It is intriguing that, in
some instances, miR-124 and miR-9 are needed to act
cooperatively with each other [58,73] and as parts of regu-
latory feedback loops involving REST [47,90]. Although
these regulatory networks can be quite complicated with
multiple transcription factors and miRNAs involved, a
recurring theme seems to be that one or a few mRNA tar-
gets account for the majority of the phenotype in a parti-
cular developmental or cellular process (Tables 1 and 2).
This is likely the case for many other miRNAs as well. The
context-dependent functions of miRNAs in neuronal
development or other processes could be explained in part
by the variations in transcriptome composition in diverse
cell types in different species. The ratio of copy numbers
between a specific miRNA and its target may also influ-
ence its developmental functions. Thus, it will be useful to
systematically identify context-dependent targets of a spe-
cific miRNA, such as using an in vivo crosslinking and
immunoprecipitation (CLIP) approach [95,96]. Moreover,
it is critically important to study the endogenous activities
of specific miRNAs in their physiological contexts, and

Table 1 mRNA targets and functions of miR-9 in neuronal development and function

Functions Species Targets References

Suppresses excess SOP production D. melanogaster Sens [38,55]

Promotes dendritic branching D. melanogaster ? [68]

Restricts the extent of MHB Zebrafish FGF8, FGFR1 [44]

Promotes neuronal differentiation near MHB Zebrafish Her5, Her9 [44]

Limits the generation of Cajal-Retzius cells Rodent Foxg1 [39]

Promotes neuronal differentiation from adult neural stem/progenitor cells Rodent TLX [59]

Enhances alcohol tolerance in adult brains Rodent BK channels [86]

Inhibits astroglial cell differentiation Rodent ? [58]

Promotes proliferation but limits migration of hESC-derived young hNPCs Human Stathmin [40]

May contribute to neurodegenerative diseases Human NEFH, REST [89,90]

BK channel, large conductance calcium- and voltage-activated potassium channel; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; Foxg1,
forkhead box protein G1; hESC, human embryonic stem cell; hNPC, human neural progenitor cell; MHB, midbrain-hindbrain boundary; NEFH (neurofilament heavy
polypeptide); REST, RE1 silencing transcription factor; SOP, sensory organ precursor; TLX, human homologue of the Drosophila tailless gene.
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results obtained from heterologous assay systems need to
be interpreted with sufficient caution.
Although only a limited number of miRNAs have been

studied for their endogenous functions in the nervous
system, the importance of this class of regulatory mole-
cules in the construction of neuronal circuits is becoming
increasingly evident. Intriguingly, despite evolutionary
conservation at the nucleotide level, the expression pat-
terns and regulatory targets of many miRNAs shifted
during evolution. miR-9 and miR-124 are among the
most ancient animal miRNAs that show cell-type specific
expression and may play key roles in the development of
new body plans [97]. Thus, conserved neuronal miRNAs
may assume novel functions, which, together with newly
evolved miRNAs, such as those uniquely expressed in the
human brain [98], may contribute to the evolution of this
most complex yet poorly understood organ.
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