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Abstract
Background: The production of new neurons during adulthood and their subsequent integration
into a mature central nervous system have been shown to occur in all vertebrate species examined
to date. However, the situation in insects is less clear and, in particular, it has been reported that
there is no proliferation in the Drosophila adult brain.

Results: We report here, using clonal analysis and 5'-bromo-2'-deoxyuridine (BrdU) labelling, that
cell proliferation does occur in the Drosophila adult brain. The majority of clones cluster on the
ventrolateral side of the antennal lobes, as do the BrdU-positive cells. Of the BrdU-labelled cells,
86% express the glial gene reversed polarity (repo), and 14% are repo negative.

Conclusion: We have observed cell proliferation in the Drosophila adult brain. The dividing cells
may be adult stem cells, generating glial and/or non-glial cell types.

Background
The generation of new neurons from adult neural stem
cells, and their subsequent integration into functional
neural circuits in a mature central nervous system, is a
widespread phenomenon across the animal kingdom.
Adult neural stem cells were initially discovered by Joseph
Altman as early as the 1960s [1-3] (for reviews, see [4,5]),
and adult neurogenesis has since been shown to occur in
all vertebrate species so far examined, including fishes [6-
10], amphibians [11,12], reptiles [13,14], birds [15], mar-
supials [16], non-human primates [17,18], and humans
[19].

While adult neural stem cells appear to be common in ver-
tebrates, the situation in insects is much less clear. The
house cricket was the first insect in which adult neurogen-

esis was reported [20], followed by beetles [21,22], cock-
roaches [23] and moths [24]. However, adult neural stem
cells were not found in the locust [21], the monarch but-
terfly [25], or the honey bee [26]. In vertebrates, adult
neurogenesis is thought to be confined to the subventricu-
lar zone of the lateral ventricle and the subgranular zone
of the dentate gyrus in the hippocampus. In insects, adult
neural stem cells were found exclusively in the mushroom
bodies (corpora pedunculata; for reviews, see [27,28]),
which are implicated in learning and memory, to which
adult neurogenesis may contribute [29,30].

In Drosophila, adult stem cells have recently been discov-
ered in the adult gut [31,32] and the malphigian tubules
[33], but the brain of the adult fly is reportedly devoid of
cell proliferation [34]. The neural stem cells (neuroblasts)
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that generate the central nervous system of adult Dro-
sophila are thought to stop division, undergo apoptosis, or
differentiate before eclosion [34-37]. Here we show that
cell proliferation takes place in the adult Drosophila brain.
Most of the dividing cells label with Repo, a protein
expressed by glia, while a smaller fraction labels with nei-
ther Repo nor Elav, a neuronal protein.

Results and discussion
To identify proliferating cells in the Drosophila adult brain,
we induced MARCM (mosaic analysis with a repressible
cell marker) clones [38,39] by expression of hs-FLP
recombinase. mCD8-green fluorescent protein (GFP) and
H2B-monomeric red fluorescent protein (mRFP) labelled
clones were generated in adult flies two days (single heat-
shock), or two, four, and six days (triple heat-shock) after
eclosion. Female brains were dissected 10 days after
eclosion, and clones were mapped onto a common refer-
ence brain map (Figure 1).

We observed an increased frequency of clones in the heat-
shocked versus the non-heat-shocked control sample, in

particular in the number of 2–5 cell clones (Figure 2;
Table 1; Additional files 1 and 2). The average number of
two-cell clones increased by 50%, from 1.09 ± 0.20 clones
per brain in the control (n = 33 brains) to 1.67 ± 0.31 in
the triple heat-shocked sample (n = 12 brains). The
increase was more pronounced for three- to five-cell
clones, where a threefold increase was observed from 0.36
± 0.09 clones per brain in the control (n = 33 brains) to
1.17 ± 0.30 clones in the triple heat-shocked sample (n =
12 brains). The high background of clones that we
observed in the control samples may be due to leaky
expression of FLP from the hsp70 promoter [40,41].

A large fraction of the two- and three- to five-cell clones
induced by single and triple heat-shock clustered ventro-
lateral to the antennal lobes. Two-thirds of the three- to
five-cell clones on the frontal side of the brain (8 out of 10
clones in the single heat-shock sample and 5 out of 8
clones in the triple heat-shock sample) clustered in this
region, and one half of the two-cell clones (6 out of 9
clones in the single heat-shock sample and 5 out of 15
clones in the triple heat-shock sample; Figure 3).

The distribution of two- and three- to five-cell MARCM clones in control and triple heat-shocked samplesFigure 1
The distribution of two- and three- to five-cell MARCM clones in control and triple heat-shocked samples. (A, 
B) Two-cell MARCM clones (yellow) and three- to five-cell clones (red) from brains of the control (A) (n = 12) and the triple 
heat-shocked sample (B) (n = 12) mapped onto the common reference brain map. Discs large staining outlines cell cortices and 
the neuropile. Frontal view, left; caudal view, right. AL, antennal lobe; AN, antennal nerve; VLPR, ventrolateral protocerebrum. 
The scale bar is 200 μm.
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To complement the clonal analysis, we fed 5'-bromo-2'-
deoxyuridine (BrdU) to adult flies from 1 day after
eclosion onwards and dissected brains 3 or 10 days after
eclosion. We detected between one and nine BrdU-posi-
tive cells per brain; on average, 3.2 ± 0.3 cells in 3-day-old
brains (n = 31 brains) and 4.1 ± 0.5 cells in 10-day-old
brains (n = 17 brains). Interestingly, these cells localise
around the antennal nerve in an area similar to the major-
ity of two- and three- to five-cell MARCM clones (Figure
4A–C; Additional file 3).

To characterise further the BrdU-positive cells, we stained
for Repo (Reversed Polarity, a transcription factor
expressed by glial cells) and Elav (embryonic lethal abnor-
mal visual system, a neuronal RNA binding protein; Fig-
ure 4). The majority of BrdU-positive cells expressed Repo
(86%; 86 out of 98 cells in 3-day-old adult brains, 59 out

of 70 cells in 10-day-old adult brains; Figure 4A, C; Table
2). The remaining BrdU-positive cells were Repo-negative
and Elav-negative (14%; 12 out of 98 cells in 3-day-old
adult brains, 11 out of 70 cells in 10-day-old adult brains;
Figure 4B; Table 2).

BrdU incorporation could indicate endoreduplication
rather than cell proliferation. To distinguish between
these possibilities we performed a pulse-chase experiment
(Figure 4D). Adult flies were given a 3 hour pulse of BrdU
shortly after eclosion and their brains were dissected after
6 hours, or after 4 days. In the 6 hour sample, only 21%
of the brains had greater than one or two labelled cells
around the antennal nerve (n = 47 brains). By compari-
son, 46% of the brains in the 4 day sample had three or
more labelled cells (n = 57 brains). Moreover, the pres-
ence of six or seven BrdU-positive cells was observed only
in the 4 day sample, and not in the 6 hour sample. Of the
BrdU-positive cells in the 6 hour sample, 83% were Repo-
positive, as were 85% in the 4 day sample.

To detemine whether the BrdU-labelled cells corre-
sponded directly to the dividing cells we observed by
MARCM, we combined BrdU labelling with clonal analy-
sis. In order to avoid the high background of clones we
observed in the control MARCM samples, we used a dif-
ferent lineage tracing technique that gives few, if any,
background clones [31,42]. In 2 out of 18 BrdU-positive
brains we observed cell clones (marked by nuclear β-
galactosidase) labelled with BrdU around the antennal
nerve (Figure 5). We conclude that cells in the adult brain
are actively dividing, and that the majority of these cells
express Repo.

It is possible that either, or both, of the populations of
dividing cells we observed give rise to neurons. Adult neu-
ral stem cells in vertebrates, and also in decapod crusta-
ceans, show glial characteristics [43-46]. Astrocyte-like
cells in mammals, and radial glia-like cells in non-mam-
malian vertebrates, act as adult neural stem cells and are
responsible for the production of new neurons through-
out adulthood. Although we did not observe Elav-positive
neurons arising de novo in the first 10 days after eclosion,

Table 1: The frequency of clones in control and heat-shocked samples

Control Heat-shock after 2 days Heat-shock after 2, 4, 6 days
(n = 33 brains) (n = 12 brains) (n = 12 brains)

Clone Average  
number of

clones/brain

Number  
of clones
counted

Average  
number of

clones/brain

Number  
of clones
counted

Average  
number of

clones/brain

Number  
of clones
counted

1 cell 9.79 ± 0.92 323 12.83 ± 2.02 154 11.92 ± 1.29 143
2 cells 1.09 ± 0.20 36 0.92 ± 0.31 11 1.67 ± 0.31 20
3–5 cells 0.36 ± 0.09 12 0.83 ± 0.24 10 1.17 ± 0.30 14

The frequency of two- and three- to five-cell clones increases after triple heat-shockFigure 2
The frequency of two- and three- to five-cell clones 
increases after triple heat-shock. The average number of 
two- and three- to five-cell cell clones per brain for the non-
heat-shocked control (blue; n = 33 brains) and triple heat-
shocked animals (orange; n = 12 brains). Error bars denote 
standard error of the mean; the asterisk indicates p < 0.05 
(two-tailed) Mann-Whitney U and Student's t-test.
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they might appear later in adult life. Alternatively, the
BrdU-positive cells might have given rise to Elav-negative
neurons.

Most interestingly, the majority of proliferating cells are
found in a specific area of the brain, around the antennal
nerve. This observation fits with the concept that stem
cells are often found in particular microenvironments, or
niches [47-49]. In crustaceans, adult neurogenesis occurs
in the central olfactory pathway [50-53]. In these arthro-
pods, adult neural stem cells are localised in two discrete
clusters on both sides of the olfactory lobe, the equivalent
of the insect antennal lobe, and the new neurons pro-
duced during adulthood consist of olfactory projection
neurons and local interneurons [52,53]. During adult
neurogenesis in the subventricular zone of vertebrates,
newly produced neurons travel through a rostral migra-
tory stream to the olfactory bulb [4,29]. It has been sug-
gested that blocking adult neurogenesis in crickets impairs
olfactory learning and memory [54] and recently, Imay-
oshi et al. [55] showed that, in mice, continued neurogen-
esis serves to maintain and reorganise the interneuron
system of the olfactory bulb.

Until now, adult neurogenesis in insects had been
observed only in the mushroom bodies [20,21,23,24]. In
Drosophila, early [3H]thymidine labelling experiments
also suggested that cell proliferation takes place in the

mushroom bodies of the Drosophila adult brain [56], but
these results could not be confirmed [34] (this study).

Conclusion
Here we show that, contrary to earlier reports, there are
proliferating cells in the Drosophila adult brain. In other
insect species adult neurogenesis takes place in the mush-
room bodies. We did not observe cell division in these
prominent structures, but instead show cell proliferation
around the antennal nerve. The majority of proliferating
cells expressed Repo (86%), and may be glial, while 14%
of the BrdU-positive cells were Repo-negative. A complete
lineage analysis and characterisation of the terminal phe-
notype of the cells generated by these clones will reveal
whether glia, neurons, or both are generated in the adult
Drosophila brain.

Materials and methods
Fly stocks and MARCM analysis
Drosophila were grown under standard conditions. Ore-
gon R was used as wild-type strain. For the MARCM anal-
ysis yw, hsFLP; FRT40A, tub-GAL80/CyO; tub-GAL4/TM6
(a gift of B. Bello) virgin females were crossed to w;
FRT40A; UAS-mCD8-GFP, UAS-H2B-mRFP males ([57]
and this study). The progeny from this cross were heat-
shocked at 37°C for 50 min in a water bath 2 days (single
heat-shock sample) or 2, 4, and 6 days after eclosion (tri-
ple heat-shock sample). 10 days after eclosion, the brains

MARCM clones cluster ventrolateral to the antennal lobesFigure 3
MARCM clones cluster ventrolateral to the antennal lobes. (A) Two-cell clones (yellow) and three- to five-cell clones 
(red) from single heat-shock animals (n = 12 brains) are found ventrolateral to the antennal lobes. The black arrow indicates a 
four-cell clone that is shown in (B). (B) A z-series of six consecutive, one micron optical sections, running from left to right. 
The four cells of the clone are marked by H2B-monomeric red fluorescent protein (mRFP) and are outlined with dashed white 
lines. The white arrows indicate three other single cell clones. Discs large (DLG; blue) outlines cell cortices and the neuropile. 
AL, antennal lobe; AN, antennal nerve; VLPR, ventrolateral protocerebrum. The scale bar is 20 μm.
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Most 5'-bromo-2'-deoxyuridine (BrdU)-positive cells co-stain with Repo and localize around the antennal nerveFigure 4
Most 5'-bromo-2'-deoxyuridine (BrdU)-positive cells co-stain with Repo and localize around the antennal 
nerve. (A) Three BrdU-labelled cells in a 3-day-old adult female brain stained for Repo and Elav. One cell can be clearly seen 
(white arrow) and two others are slightly out of the plane of focus, one more ventro-medial and one more dorso-lateral (white 
arrowheads). All three cells express Repo but not Elav. Single x-y confocal sections are shown, with insets showing y-z sec-
tions; the far right panel shows the merged image. (B) Fourteen percent of BrdU-labelled cells do not express Repo. One such 
cell (white arrow) is shown here, adjacent to a Repo-positive cell (white arrowhead), in a 10-day-old adult male brain. Single x-
y confocal sections are shown, with insets showing y-z sections; the far right panel shows the merged image. (C) Two BrdU- 
and Repo-positive cells are shown that appear to have divided along the apico-basal axis. The single confocal sections show the 
more superficially localised cell (white arrow), while x-z and y-z sections (below and to the right, respectively) show the cell 
lying beneath it (white arrowhead). Neither cell expresses the neuronal marker Elav. Dorsal is to the top in (A, B) and to the 
upper left in (C); AL, antennal lobe; AN, antennal nerve. The scale bar is 10 μm. (D) A bar graph showing the results of the 
BrdU pulse chase experiment. Blue bars represent BrdU-labelled cells around the antennal nerve in brains dissected 6 hours 
after a 3 hour BrdU pulse (n = 47); orange bars represent BrdU-labelled cells in brains dissected after 4 days (n = 57). Note the 
increase in the number of BrdU-labelled cells in the 4 day sample.
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of both heat-shocked and the non-heat-shocked flies were
dissected and prepared for confocal microscopy. Adults of
the genotype yw, hsFLP/+; X15-29/X15-33 [42] were used
in experiments that combined the clonal analysis and the
BrdU labelling.

Immunohistochemistry and BrdU labelling
Brains were fixed and stained essentially as previously
described [58]. BrdU labelling was performed as previ-
ously described [34,35]. Adult flies were collected imme-
diately after eclosion and starved for up to 24 hours before
feeding on soaked filter paper (Whatman, Springfield
Mill, Kent, United Kingdom) and yeast containing 5%
sucrose (Sigma-Aldrich, Dorset, United Kingdom), 1 mg/
ml BrdU (Sigma-Aldrich, Dorset, United Kingdom) and
1% red food colour (SuperCook, Leeds, United King-
dom). The addition of food colour enabled the selection
of flies with sufficient food intake, as monitored by
abdominal labelling. For the pulse-chase experiment,
adult flies were fed 2 mg/ml BrdU for 3 hours, 15–20
hours after eclosion. The brains from these animals were

dissected either after 6 hours or after 4 days. To combine
clonal analysis with BrdU-labelling, we used adults of the
genotype yw, hsFLP/+; X15-29/X15-33 [42], in which
mitotic clones are marked by expression of nuclear β-
galactosidase. From shortly after eclosion onwards the
flies were fed with 1 mg/ml BrdU. They were subjected to
three heat shocks (1 hour at 37°C, followed by a 2 hour
recovery phase) on days 1 and 2 after eclosion. The brains
were dissected 3 days after eclosion.

Primary antibodies were rabbit anti-β-galactosidase
(1:10,000; Cappel, West Chester, Pennsylvania, USA); rat
anti-BrdU (1:100; Abcam, Cambridge, United Kingdom);
mouse anti-Dlg 4F3 (1:100; Developmental Studies
Hybridoma Bank (DSHB), Iowa City, Iowa, USA); mouse
anti-ELAV 9F8A9 (1:10; DSHB); rabbit anti-GFP (1:1000;
U Mayor and AHB, unpublished); rabbit anti-Repo
(1:100; [59]). Secondary antibodies were Alexa488,
Alexa568, Alexa633 (1:200; Molecular Probes, Invitrogen,
Paisley, United Kingdom).

Mitotic clones around the antennal nerve label with 5'-bromo-2'-deoxyuridine (BrdU)Figure 5
Mitotic clones around the antennal nerve label with 5'-bromo-2'-deoxyuridine (BrdU). Two mitotic, single cell 
clones are marked by expression of lacZ in a 3-day-old adult X15-29/X15-33 brain. One of the two β-galactosidase-positive 
cells also stains for BrdU (white arrow), while the second does not (white arrowhead). The images are a z-series projection of 
24 0.3 μm sections. Dorsal is to the upper left. AL, antennal lobe; AN, antennal nerve. The scale bar is 10 μm.

Table 2: The number of BrdU-labelled cells in the Drosophila adult brain

3 days after eclosion 10 days after eclosion
(n = 31 brains) (n = 17 brains)

Average number of cells/brain Number of cells Percent Average number of cells/brain Number of cells Percent

BrdU (+) Repo (+) 2.77 ± 0.33 86 88 % 3.47 ± 0.48 59 84 %
BrdU (+) Repo (-) 0.39 ± 0.11 12 12 % 0.65 ± 0.14 11 16 %
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Microscopy, cell counting, and image processing
Images were acquired on a Leica TCS SP2 or a Zeiss LSM
510 META confocal microscope. The common reference
map for the MARCM analysis is a three-dimensional
reconstruction (Volocity, Improvision, Coventry, United
Kingdom) of a series of 0.7 μm sections of a 10-day-old
adult female brain (20× oil immersion objective, numeri-
cal aperture 0.7). Z-series (1.5 μm sections) of brains from
heat-shocked and control samples were used for cell
counting. Images of control and experimental brains were
randomised, and cell counting was carried out double-
blind. Images were processed using Volocity (Improvi-
sion) and ImageJ [60]. Figures were assembled in Adobe
Photoshop 9.0 and Adobe Illustrator 12.0. Statistical anal-
ysis was performed using Aabel (Gigawiz, Oklahoma City,
Oklahoma, USA).

Abbreviations
BrdU: 5'-bromo-2'-deoxyuridine; Elav: embryonic lethal
abnormal visual system; GFP: green fluorescent protein;
MARCM: mosaic analysis with a repressible cell marker;
mRFP: monomeric red fluorescent protein; Repo:
Reversed Polarity.
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