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Abstract
Background: Focal adhesion kinase (FAK) functions in cell migration and signaling through
activation of the mitogen-activated protein kinase (MAPK) signaling cascade. Neuronal function of
FAK has been suggested to control axonal branching; however, the underlying mechanism in this
process is not clear.

Results: We have generated mutants for the Drosophila FAK gene, Fak56. Null Fak56 mutants
display overgrowth of larval neuromuscular junctions (NMJs). Localization of phospho-FAK and
rescue experiments suggest that Fak56 is required in presynapses to restrict NMJ growth. Genetic
analyses imply that FAK mediates the signaling pathway of the integrin PS3 heterodimer and
functions redundantly with Src. At NMJs, Fak56 downregulates ERK activity, as shown by
diphospho-ERK accumulation in Fak56 mutants, and suppression of Fak56 mutant NMJ phenotypes
by reducing ERK activity.

Conclusion: We conclude that Fak56 is required to restrict NMJ growth during NMJ
development. Fak56 mediates an extracellular signal through the integrin receptor. Unlike its
conventional role in activating MAPK/ERK, Fak56 suppresses ERK activation in this process. These
results suggest that Fak56 mediates a specific neuronal signaling pathway distinct from that in other
cellular processes.
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Background
Formation and stabilization of neuronal synapses
demands communication between pre- and post-synaptic
partners, as well as signals from the extracellular matrix
(ECM). These signals can reorganize local cytoskeletal
structures or be transduced into the nucleus to regulate
transcription, thereby modulating neuronal plasticity [1-
3]. One major receptor family for ECM signals comprises
the transmembrane protein integrins, which have been
shown to play critical roles in sequential steps of neuronal
wiring, such as in neurite outgrowth, axon guidance, and
synaptic formation and maturation [4-7]. In Drosophila,
various integrin subunits have been shown to function in
motor axon pathfinding and target recognition, and syn-
aptic morphogenesis at neuromuscular junctions (NMJs)
[8-10]. Mutant analyses for the integrin subunits PS3
and PS indicate that integrin signaling is involved in syn-
aptic growth and arborization of larval NMJs [8-10].
Although specific ECM signals for these integrin receptors
are not clear, dynamic NMJ growth is regulated by
heparan sulfate proteoglycans [11]. Also, the N-gly-
cosaminoglycan-binding protein MTG (encoded by mind
the gap), a pre-synaptic secreted ECM molecule, has been
shown to shape the synaptic cleft and modulate post-syn-
aptic differentiation [12].

Integrin signaling activities in cell adhesion, spreading
and migration can be mediated by the non-receptor tyro-
sine kinase focal adhesion kinase (FAK) [13-15]. In these
processes, FAK becomes activated when phosphorylated
at tyrosine 397 (Y397) and associates with Src to form a
dual kinase complex [14,16]. Activated Src phosphor-
ylates FAK thereby creating a signaling cascade through
Ras and mitogen-activated protein kinase (MAPK)/ERK
[17-19]. Activated ERK can modulate focal contact
dynamics during cell migration, as well as promote cell
proliferation and survival. In Drosophila larval NMJ
growth regulation, ERK is specifically activated by Ras and
its activation downregulates the protein levels of the cell
adhesion molecule Fasciclin II (FasII) at NMJs [20].

The significance of FAK in development has been revealed
by fak knockout mice that are embryonic lethal at embry-
onic day 8.5 during gastrulation, consistent with its role in
cell adhesion and migration [21]. FAK proteins are highly
enriched in developing nervous systems, in particular in
axonal tracks and growth cones [22-25]. Neuronal-spe-
cific depletion of fak leads to cortical abnormalities,
revealing the requirement of FAK in neural development
[26]. At the cellular level, ablation of fak in Purkinje cells
induces axonal branching and synapse formation, and
this FAK activity is suggested to be partially mediated
through p190RhoGEF, which modulates cytoskeletal
structure [27]. Inactivation of the only Drosophila FAK
gene, Fak56, however, permits normal development and

transduction of integrin signaling pathways [28]. A
requirement for Fak56 in glial cells of the optic stalk has
recently been reported, suggesting for the first time a role
for FAK family kinase activity in Drosophila [29].

We have generated Fak56 mutants and identified a role for
Fak56 in restricting NMJ growth. Analyses of genetic inter-
actions suggest that Fak56 plays a conventional role in
cooperation with Src to transduce integrin signaling.
Fak56 is activated at NMJs, as shown by immunostaining
for its phosphorylated form and this activation depends
on the presence of the integrin  subunit. ERK activation
and FasII protein downregulation were observed at Fak56
mutant NMJs. The NMJ overgrowth phenotype and FasII
downregualtion in Fak56 mutants can be suppressed by
reducing ERK activity. The physiological output of the
enlarged NMJ in Fak56 mutant displays increased synaptic
response by nerve stimulation. These results suggest that
Fak56 negatively regulates ERK activity and modulates
synaptic plasticity at NMJs.

Results
Larval NMJ overgrowth in Drosophila Fak56 null mutants
The Fak56 protein is highly expressed in the ventral nerve
cord during embryonic stages [22,25]. To examine
whether Fak56 has a role in NMJ formation, we dissected
late third instar larvae from a transheterozygous Fak56N30/

K24 mutant that deletes the Fak56 gene and lacks Fak56
mRNA expression (Additional file 1A, B, and Additional
file 1 legend for the generation of Fak56 mutants). This
Fak56 null mutant was immunostained with horseradish
peroxidase (HRP) in order to label axonal processes [30],
and phalloidin (Pha) to label muscle fibers. No abnor-
mality of motor axonal tracts could be detected, and the
pattern and size of muscles were normal, in agreement
with earlier observations [28]. However, a more detailed
examination revealed that Fak56 null mutant NMJs were
overelaborated in comparison to wild-type ones (Figure
1A, B). NMJs innervating muscles 6 and 7 (NMJ 6/7s) of
abdominal segment 3 (A3) were analyzed by immunos-
taining for HRP and synaptotagmin (Syt) to label presyn-
aptic boutons [31]. Altered branching patterns and
ectopic synaptic boutons were observed, with increases in
both Ib and Is boutons (arrows and arrowheads, respec-
tively, in Figure 1C, D). Quantitatively, the number of
synaptic boutons was increased by 44% and the total
branch length increased by 22% when normalized to the
total area of muscles 6 and 7 (quantified in Figure 1E).
The Fak56 activity was not limited to NMJ 6/7s since NMJ
4s also displayed overgrowth phenotypes in both total
branch length (62% increase) and bouton number (101%
increase) (Figure 1F–H). Furthermore, previous reported
Fak56CG1 null mutants [28] also displayed a significant
NMJ overgrowth phenotype when compared to wild-type
control (Additional file 1C–E).
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Figure 1 (see legend on next page)
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When scored for NMJ 6/7s, the altered branching pattern
in Fak56N30/K24 mutants showed secondary branch reduc-
tion by 21% but increases in higher-order branches (73%
for tertiary branches and 424% for beyond tertiary; Figure
1I). The increase in higher-order branches was not caused
by extension of multiple branches from single boutons,
since a normal bifurcating pattern was observed.

To confirm that NMJ overgrowth phenotypes in the
Fak56N30/K24 mutant are due to the absence of Fak56 activ-
ity, a UAS-Fak56 transgene [25] was introduced. We found
that neuronal expression of Fak56 with elav-GAL4 in the
Fak56N30/K24 mutant completely suppressed the NMJ phe-
notypes, as shown in assays for total branch length and
bouton number of NMJ 6/7s. In contrast, Fak56 expres-
sion with the muscle-specific MHC-GAL4 failed to rescue
Fak56 mutant phenotypes (Figure 1E). Taken together,
these results suggest that Fak56 is specifically required in
presynaptic neurons but not postsynaptic muscles to
restrict NMJ growth. The exuberant NMJs in Fak56 null
mutants were constructed normally, since molecular
markers for various synaptic structures were expressed in
a wild-type pattern (Additional file 2). Synaptic ultrastruc-
ture analyzed by transmission electron microscopy
revealed no significant alternations in pre- and post-syn-
aptic structures (Additional file 3).

Synaptic transmission is affected in the Fak56 null mutant
To examine whether the enlarged NMJ in Fak56 null
mutants is associated with functional changes in transmit-
ter release, postsynaptic currents were recorded. In the
null Fak56N30/K24 mutant, no alteration was observed in
the amplitude of spontaneous release of neurotransmitter
or miniature junctional potentials (mEJPs) at a low Ca2+

concentration (0.2 mM), as shown in the cumulative fre-
quency plot (Figure 1J). Similar skews of distributions
were measured for wild type and Fak56N30/K24 (1.5 ± 0.1 in

wild type and 1.7 ± 0.2 in Fak56N30/K24, 0.25 <p < 0.5 by
Kruskal-Wallis h test). The variance/mean of mEJP ampli-
tudes were also similar (0.28 ± 0.04 in wild type and 0.25
± 0.04 in Fak56N30/K24, 0.25 <p < 0.5 by Kruskal-Wallis H
test). The frequency of mEJP was not changed significantly
(1.2 ± 0.2 Hz in wild type and 1.8 ± 0.3 Hz in Fak56N30/

K24, p = 0.16, Student's t-test). Resting membrane poten-
tials were similar in these measurements (-69.1 ± 1.9 mV
in wild-type and -66.6 ± 1.5 mV in Fak56N30/K24, p = 0.32
by Student's t-test). However, the mean amplitude of
nerve-evoked EJPs was significantly enhanced at Fak56
mutant NMJs compared to wild type (p = 0.026 by Stu-
dent's t-test, Figure 1K; measurements were also per-
formed at 1 mM [Ca2+]; Additional file 4). These data
demonstrate a role of Fak56 in modulating the electro-
physiological behavior of Drosophila NMJs.

Involvement of integrin subunits PS3 and  in Fak56-
regulated NMJ growth
We then tested whether Fak56 mediates specific integrin
activities at NMJs by genetic analysis. Integrin receptors
are composed of heterodimeric  and  subunits [32]. In
the Drosophila genome, there are five  subunits: PS1
(encoded by multiple edematous wings, mew), PS2
(inflated, if), PS3 (Vol or scb), PS4 and PS5 (both PS4
and PS5 uncharacterized), and two  subunits (PS
(myospheroid, mys) and ()) [33-38]. We tested for pos-
sible genetic interactions between the available mutant
alleles of integrin subunits and Fak56. In Fak56N30/KG

hypomorphic animals, expression of Fak56 mRNA was
reduced, but the NMJ appeared phenotypically normal
(Additional file 1A, B; Figure 2A). However, when single
mutant alleles of scb2 and 1 were introduced into the
Fak56N30/KG background, significant NMJ overgrowth was
induced (Figure 2B, C). This overgrowth phenotype was
not detected when mew1, ifk27e and mys1 were introduced
(quantified in Figure 2G). As controls, larvae that were

NMJ overelaboration in Fak56 mutantsFigure 1 (see previous page)
NMJ overelaboration in Fak56 mutants. (A, B) Muscular and axonal patterns in A3 segments shown by horseradish per-
oxidase (HRP)-labeled axonal branches of motor neurons (green), and Pha-labeled muscular pattern (magenta). NMJs 6/7, 12/
13 and 4 are shown for wild-type (A) and Fak56N30/K24 (B). In these and all other figures, scale bars represent 20 m unless spe-
cifically indicated. (C, D) NMJ 6/7 phenotypes in A3 segments shown by HRP-labeled axons (green), Syt-labeled synaptic bou-
tons (red) and Pha-labeled muscles (not shown). Arrows and arrowheads indicate type Ib and Is boutons, respectively. (E) 
Quantification of bouton numbers and total branch length that are normalized to total muscle 6/7 areas for wild-type, 
Fak56N30/K24, Fak56N30/K24 ;elav>Fak56, and Fak56N30/K24;MHC>Fak56. In this and all following quantifications, values are mean ± 
SEM, asterisks indicate p < 0.05 by Student's t test and sample numbers are within each bar. (F-H) NMJ 4 in A3 segments of 
wild-type (F) and Fak56N30/K24 (G) are labeled as in (C, D), and quantifications of bouton number and total branch length are 
shown in (H). (I) Quantification for the number of branches at NMJ 6/7s of wild-type and Fak56N30/K24. Branches originating 
from the nerve entry point are primary (1°), and subsequent branches with at least three boutons are defined progressively 
with one higher order (2°, 3° or >3°). (J, K) Electrophysiological recording of postsynaptic currents in wild-type and Fak56N30/

K24 in 0.2 mM [Ca2+]. (J) Cumulative frequency plot to compare amplitudes of mEJPs in wild-type and Fak56N30/K24. (K) Repre-
sentative traces (left panel) and mean peak amplitude (right panel) of EJPs in wild-type and Fak56N30/K24. Calibration: 30 ms, 5 
mV for evoked release.
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Genetic interactions between Fak56 and integrin signaling pathway components during neuromuscular junction (NMJ) growthFigure 2
Genetic interactions between Fak56 and integrin signaling pathway components during neuromuscular junc-
tion (NMJ) growth. (A-F) Images of NMJ 6/7 are shown as described for Figure 1C, D. Hypomorphic Fak56N30/KG mutants 
showed a normal morphology (A), but one allele of scb2 (B), 1 (C) or LanA9–32 (E) in Fak56N30/KG induced dramatic NMJ 
growth. Overelaborated NMJs in transheterozygotes 1/2 (D) and 1/+;LanA9–32/+ (F) mutants are shown. (G) Quantification 
of NMJ 6/7 phenotypes for Fak56N30/KG, mew1/+;Fak56N30/KG, ifk27e/+;Fak56N30/KG, scb2/+ Fak56N30/KG, mys1/+;Fak56N30/KG, 1/

+Fak56N30/KG, Fak56N30/KG;LanA9–32/+, wb4Y18/+ Fak56N30/KG, scb2/+, 1/+, 1/2, LanA9–32/216 and 1/+;LanA9–32/+. Asterisks indicate 
significant difference by Student's t test (p < 0.05) and error bars represent the standard error of the mean (SEM).
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heterozygous for the scb2 or 1 mutant alleles displayed
normal NMJ bouton number and length (quantified in
Figure 2G). These results suggest that compromised PS3
or  integrin signaling demands the full-strength of
Fak56 activity to constrain NMJ growth. Since NMJ over-
growth has been observed for PS3 but not  mutants
[9], we examined NMJ phenotypes in the viable 1/2

mutant. Strikingly, significant increases in both branch
length and bouton number were detected, similar to those
observed in Fak56 null mutant larvae (Figure 2D). In sum-
mary, these genetic analyses suggest that PS3 and  are
the main integrin subunits in regulating Fak56 activity
during NMJ growth.

The laminins are ECM components composed of heterot-
rimers of , and  subunits, and are major signals for
integrin receptors [39]. In Drosophila, LanA and wing blister
(wb) encode two different  chains. We performed genetic
interaction for both  chain mutants to test their involve-
ment in Fak56 activity. Introducing one mutant allele of
LanA9–32 but not wb4Y18 into the Fak56N30/KG hypomorphic
background promoted a significant increase in the
number of synaptic boutons (Figure 2E, G). The total NMJ
length was also increased, although it was not significant
(p = 0.37). While the hypomorphic LanA9–32/216 mutant
displayed normal NMJ phenotypes, transheterozygous
1/+;LanA9–32/+ displayed strong overgrowth phenotypes,
with 61% increase in the bouton number and 32%
increase in the total length compared to wild-type NMJs
(Figure 2F, G). These results are consistent with a role for
the  subunit LanA as a component of laminins to signal
integrins during NMJ growth.

Participation of Src in Fak56-regulated NMJ growth
Activated FAK forms a complex with Src, and the dual
FAK-Src kinase complex induces downstream signaling
[40]. To test whether Src is involved in Fak56-regulated
NMJ growth, we performed genetic interactions between
Fak56 and the Drosophila Src genes Src42A and Src64B.
Reducing one gene dosage of either Src42A (Src42AE1) or
Src64B (Src64BPI) in the Fak56KG/N30 background dis-
played significant NMJ overgrowth, as scored for total
branch length and bouton number (Figure 3A, B, E). Con-
trols of Src42AE1/+;Src64B+/+ and Src42AE1/+; Src64BPI/+ in a
wild-type background displayed no significant NMJ over-
growth (quantified in Figure 3E), suggesting that the effi-
ciency of Src signaling at NMJs is dependant upon Fak56
activity in a dose-dependant manner. These results are
consistent with a role for a FAK-Src complex in the restric-
tion of NMJ growth.

We then tested whether severe Src mutants display NMJ
growth defects. In the viable Src42AE1/+; Src64BPI/PI mutant
that generates the least Src activity [41], the number of
boutons was significantly increased and the total branch

length was slightly enhanced (Figure 3C, E). To test
whether Src has any contribution in the complete absence
of Fak56 activity, we generated the combinatorial mutant
Src42AE1/+Fak56N30/K24;Src64BPI/+ and found that reducing
the gene dosage of Src further increased the number of
boutons in the Fak56 null mutant by 21%. In comparison
to wild-type animal controls, Src42AE1/+Fak56N30/

K24;Src64BPI/+ mutants displayed an 80% increase in the
bouton number and 25% increase in total branch length
(Figure 3D). In summary, these genetic analyses suggest
that Fak56 and Src have overlapping and distinct contri-
butions in inhibiting NMJ growth.

Activation of Fak56 at NMJs
In mammals, activation of FAK and the FAK homolog
Pyk2 proceeds with an auto-phosphorylation step at the
conserved Y397 of FAK and Y402 of Pyk2 [16,40,42],
which corresponds to Y430 in Fak56 [22,25,43]. To exam-
ine the activation of Fak56 at NMJs, we immunostained
larval NMJs with the anti-FAK [pY397] antibody, which
detects Fak56 activation at muscle attachment sites [28].
As shown for NMJ 12/13, phospho-FAK (pFAK) was
expressed strongly in Ib boutons (white arrows in Figure
4A1) and weakly in Is boutons (white arrowheads).
Expression at NMJ 4 was also prominent (Figure 4B1). In
co-staining for HRP, the pFAK signals could be found
within boutons and inter-bouton tracks (Figure 4A1, B1),
suggesting a presynaptic activation of Fak56. Strong pFAK
expression was also detected within the incoming axons
that were co-labeled by HRP (yellow arrowhead and inset
image in Figure 4B1). Cytosolic punctate staining was also
present in muscles. In Fak56N30/K24 null mutants, pFAK
signals in axons, presynapses and muscles were com-
pletely absent (Figure 4C1, C2), confirming the specificity
of the anti-pFAK antibody in detecting Fak56 activation
signals.

In the 1/1 integrin mutant, the pFAK staining in presyn-
apses was dramatically reduced while the muscle punctate
staining pattern was still retained (Figure 4D1, D2), indi-
cating that integrin signaling mediated by the  subunit
is required for Fak56 activation in presynapses of NMJs.
Taken together with the requirement of  in restricting
NMJ growth, these results suggest the presynaptic activa-
tion of Fak56 in restricting NMJ growth. To test this, the
autoactivation site Y430 in Fak56 was mutated to pheny-
lalanine to generate the UAS-Fak56Y430F transgene. When
ectopically expressed in neurons by elav-GAL4, Fak56Y430F

induced significant NMJ overgrowth phenotypes (Figure
4F). As a control, the wild-type Fak56 transgene caused
slight but no significant reduction in NMJ growth (quan-
tified in Figure 4G). This dominant negative effect by the
Fak56Y430F mutant suggests that phosphorylation at Y430
in the presynapse is critical for normal Fak56 function to
constrain NMJ growth.
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Fak56 suppresses MAPK/ERK activation at NMJs
To further investigate the role of Fak56 at the presynapse,
we generated an RNAi transgene to deplete Fak56 expres-
sion (see Materials and methods and Additional file 1F).
Expression of the Fak56RNAi transgene in presynapses
(elav>Fak56RNAi) resulted in an increase in both total
branch length and bouton number of NMJs compared to
the elav>LacZ control (Figure 5E, G). In contrast, Fak56
depletion in muscles using MHC-GAL4 retained normal
NMJ phenotypes (not shown).

It has been shown that presynaptic ERK activation pro-
motes larval NMJ growth [20]. We then tested whether
Fak56 had an effect on ERK activation at NMJs, which can
be monitored by immunostaining for diphospho-ERK
(dpERK) [44]. The expression of dpERK was detected in
punctate patterns in some but not all boutons (Figure
5A1, A2) [20].

We then examined whether dpERK expression at NMJs
was altered by presynaptic depletion of Fak56 using RNA
interference (RNAi). In elav>Fak56RNAi, dpERK expres-
sion was highly enriched in almost all boutons at the

Role of Src and its genetic interaction with Fak56 during neuromuscular junction (NMJ) growthFigure 3
Role of Src and its genetic interaction with Fak56 during neuromuscular junction (NMJ) growth. (A-D) Images of 
NMJ 6/7 are shown as in Figure 1. Fak56N30/KG mutants carrying one allele of Src42AE1 (A) or Src64BPI (B) displayed NMJ over-
growth phenotype. (C) NMJ phenotype in the severe Src mutant Src42AE1/+;Src64BPI/PI. (D) NMJ phenotype of the Fak56N30/K24 

null mutant was enhanced by removing both one Src42AE1 and one Src64BPI allele. (E) Quantification of NMJ 6/7 phenotypes for 
Fak56N30/KG (the same set of data as in Figure 2G), Src42AE1/+ Fak56N30/KG, Fak56N30/KG;Src64BPI/+, Src42AE1/+, Src42AE1/+;Src64BPI/+ 

and Src42AE1/+;Src64BPI/PI. Note that Src42AE1/+ and Src42AE1/+;Src64BPI/+show no significant alteration in NMJ phenotypes when 
compared to wild-type. Asterisks indicate significant difference by Student's t test (p < 0.05) and error bars represent the 
standard error of the mean (SEM).
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Figure 4 (see legend on next page)
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enlarged NMJ (Figure 5B, B1). To quantify the difference
among wild-type and Fak56 mutants, the level of dpERK
immuno-reactivity within the presynaptic region was nor-
malized to that of co-stained HRP. We found that in
elav>Fak56RNAi the ratio was increased by 3.3-fold when
compared to that in elav>lacZ. Consistently, neuronal
expression of the dominant-negative Fak56Y430F also
resulted in strongly enhanced dpERK expression to 3.1-
fold (Figure 5C). The enhancement in dpERK expression
levels in both approaches to block Fak56 function sug-
gests that Fak56 activation suppresses ERK signaling in
presynaptic boutons.

To test whether NMJ overgrowth phenotypes in Fak56
mutants were caused by the increased ERK activity, one
wild-type allele of the ERK gene rolled (rl) [45] was
replaced with the null allele rlEMS698 [46] in
elav>Fak56RNAi larvae. The control heterozygous rlEMS698/

+ larvae displayed normal NMJ phenotypes. However,
reduction of ERK gene dosage by 50% completely sup-
pressed the NMJ overgrowth phenotypes observed in
elav>Fak56RNAi (Figure 5D–F). The BMP/Gbb signaling
pathway also promotes NMJ growth [47]. We then tested
whether the BMP/Gbb pathway would have a similar reg-
ulation in Fak56 mutant NMJs. Three mutants in the
BMP/Gbb signaling pathway components were tested for
potential genetic interactions with Fak56 but failed to sig-
nificantly modify NMJ phenotypes in elav>Fak56RNAi lar-
vae (Additional file 5). Taken together, these results
suggest that Fak56 specifically downregulates the growth-
promoting ERK signaling during NMJ growth.

Fak56 modulates IgCAM FasII levels at NMJs
It has been shown that ERK signaling regulates NMJ growth
through the modulation of the protein levels of the cell-
adhesion protein FasII [20]. At NMJs, FasII protein levels are
inversely correlated with ERK activation. In elav>Fak56RNAi
mutants, the NMJ FasII level was reduced (Figure 6B1). Using
the elav>LacZ as the reference, a 33.5% reduction in the ratio

of the FasII level to the HRP level was detected (Figure 6A1,
D). Comparison of FasII expression between wild type and
Fak56N30/K24 also revealed a 26.6% reduction in the Fak56
mutant (images not shown). Analyses of these two mutants
suggest that Fak56 activity in presynapses is required for the
full expression of FasII at NMJs. To examine whether Fak56-
regulated FasII expression is mediated through ERK, the FasII
protein level was examined in elav>Fak56RNAi;rlEMS698/+. We
found that the FasII protein level at NMJs of elav>Fak56RNAi
was significantly restored by introducing the rlEMS698 allele,
with only 14.9% reduction compared to elav>LacZ (Figure
6C1, D). These results suggest that Fak56 regulation of FasII
expression at NMJs is at least partially mediated by ERK.

Discussion
Growth of the stereotypical NMJs during larval stages is
tightly regulated by signaling pathways that either pro-
mote or inhibit terminal branching, bouton addition and
active zone formation [20,47-50]. In this study, we have
identified an inhibitory role of the non-receptor tyrosine
kinase FAK in the regulation of NMJ growth. The Dro-
sophila FAK is required in presynaptic boutons for the
growth process, where it functions in concert with the
non-receptor tyrosine kinase Src. As evidenced by our
genetic analysis, Fak56 plays a conventional role in medi-
ating signal from the integrin receptors that mainly con-
sist of PS3 and  subunits. Noncanonically, Fak56
suppresses MAPK/ERK activity in restricting synaptic elab-
oration. In support of this context-specificity of FAK activ-
ity, we have noted no gross changes in the dynamic
patterns of ERK activation during Fak56 mutant embryo-
genesis (Additional file 6). Our data suggest that Fak56
activity inhibits ERK signaling in restricting synapse
growth (Figure 7).

The importance of FAK in regulating axonal branching of
motor neurons in Drosophila is revealed in this study and
has been shown in Purkinje cells [27]. FAK activity in
Purkinje cells has been attributed partially to the recruit-

Distribution and requirement of phospho-FAK (pFAK) at presynapses of neuromuscular junctions (NMJs)Figure 4 (see previous page)
Distribution and requirement of phospho-FAK (pFAK) at presynapses of neuromuscular junctions (NMJs). (A-
D) Active Fak56 (pFAK in magenta) recognized by anti-FAK [pY397] antibodies localized at presynapses of NMJ 12/13 (A) and 
NMJ 4 (B) in wild-type larvae, and was absent in Fak56N30/K24 (C), and reduced in 1/1 (D), with co-stained horseradish perox-
idase (HRP) in green. White arrows and arrowheads indicate Ib and Is boutons, respectively. Images in (A-D) come from a sin-
gle section of the Z-stack confocal scanning. Note punctate distribution in muscles and strong expression in axonal trunks 
(yellow arrowhead in B1) surrounded by HRP membrane staining. The inset image in B1 is the inclusion of pFAK inside the 
incoming axon from a Z-stack section crossing the middle of the axon. (A2-D2) are diphospho-ERK (dpERK) images in white. 
(E-F) Images of NMJ 6/7 are shown as for Figure 1. Neuronal overexpression of LacZ control (E) or Fak56Y430F (F) by elav-GAL4 
displays a NMJ overgrowth phenotype. (G) Quantification of NMJ 6/7 phenotypes for elav>LacZ, elav>Fak56 and 
elav>Fak56Y430F. Note that elav>Fak56 shows slight reduction in bouton number and NMJ length when compared to elav>LacZ 
control (E) but these reductions were not statistically significant (p = 0.413 for bouton number and p = 0.125 for branch length 
in Student's t-test). Asterisks indicate significant difference by Student's t test (p < 0.05) and error bars represent the standard 
error of the mean (SEM).
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Figure 5 (see legend on next page)
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ment of p190RhoGEF during axonal branching and
growth. In integrin-mediated cell adhesion, Rho activity is
initially downregulated and followed by sustained activa-
tion, leading to actin reorganization [51]. In response to
integrin signaling, the initial downregulation of Rho activ-
ity requires the activation of p190RhoGAP by tyrosine
phosphorylation and association with SH2 domain-con-
taining p120RasGAP, thus providing an alternative link
between FAK and the Ras-MAPK pathway. Future studies
on the characterization of the p190RhoGAP-p120RasGAP
complex in NMJ development should illuminate how
FAK regulates synaptic growth and plasticity.

ERK signaling regulates the protein levels of the cell adhe-
sion molecule FasII at NMJs [20]. Homophilic interaction
of FasII-like IgCAMs regulates axon pathfinding, target
recognition, and synapse formation and remodeling [52-
57]. At Drosophila NMJs, FasII is involved in synaptic for-
mation and maintenance [52,53,56,57]. Different levels
of FasII play different roles in NMJ formation. While the
basal level is essential to form the synaptic structure, a
higher-level of FasII protein restricts NMJ growth. We
found that Fak56 regulates the high level of FasII at NMJs
and this regulation could be accounted for by a suppres-
sion of ERK activity. Therefore, in NMJ growth regulation,
the cell-matrix interaction mediated by integrin signaling
cross-talks with FasII-dependent cell-cell adhesion
between pre- and post-synaptic partners (Figure 7).

Previous analysis of the activity of the Drosophila integrin
PS3 in the viable Vol allele suggested that PS3 regulates
NMJ elaboration, synaptic transmission and plasticity [9].
Lack of PS3 induces moderate NMJ overgrowth with
increases in higher-order branches and boutons, similar
to what were observed in Fak56 mutants. In our analysis,
 genetically interacts with the Fak56 mutant and the 
mutant NMJ displays an overgrowth phenotype as well,
suggesting that  may be the major  subunit forming
integrin heterodimers with PS3 to restrict NMJ growth.
The integrin subunits PS1, PS2 and PS are also
expressed at NMJs, and alteration of PS activity affects
NMJ morphology [10]; it is thus foreseeable that multiple

modes of integrin signaling pathways regulate NMJ
growth.

Laminins are the major component of the ECM and are
involved in NMJ synaptic formation and maintenance
[58]. Functional laminins are heterotrimers composed of
,  and  chains, and different chain combinations con-
tribute to laminin diversity. Laminins 4, 9 and 11 are
composed of the same 2 and 1 chain but differ in the 
chain (2, 4 and 5, respectively) and have been shown
to localize in synaptic clefts of the mammalian neuromus-
cular system [59]. In an in vitro culture system, laminin 11
with the 5 subunit serves as a stop signal in motor axon
outgrowth [59]. In Drosophila, LanA is most homologous
to mammalian 3 and 5 subunits. LanA genetically
interacts with Fak56 and  mutants and may serve as the
conserved component of the stop signal to restrict NMJ
elaboration.

Conclusion
FAK activation by integrins regulates various cellular proc-
esses, and in many cases can be accounted for by an acti-
vation of Ras through the recruitment of the GRB2-SOS
complex [14]. In our study, Fak56 activity restricts NMJ
synaptic elaboration by inhibiting the ERK signaling cas-
cade. This noncanonical link between FAK activity and
ERK signaling might be cell-context specific, such as in
neurons, or even subcellular site-specific, such as at syn-
apses. Vol (PS3) functions in the process of learning and
memory [35], and can act as the FAK upstream regulator
with the same regulatory link proposed here (Figure 7).
FAK has been suggested as a putative therapeutic target for
its role in tumor cell invasion and metastasis [13,15,60-
62]. The neuronal-specific nonconventional link between
FAK and ERK proposed in this study may have implica-
tions in cancer biology and therapy.

Materials and methods
Fly stocks
Flies were reared at 25°C except where specifically indi-
cated. Wild-type flies used in this study were the w1118

strain. Mutant alleles Fak56KG00304, mew1, ifk27e, scb2, mys1,

Suppression of ERK activity by Fak56 during neuromuscular junction (NMJ) growthFigure 5 (see previous page)
Suppression of ERK activity by Fak56 during neuromuscular junction (NMJ) growth. (A, B) Immunostaining of 
elav>LacZ (A1) and elav>Fak56RNAi (B1) for diphospho-ERK (dpERK; green) and horseradish peroxidase (HRP; magenta). A 
single section of image is shown. Punctate expression of dpERK was observed in presynaptic boutons and enhanced in the 
enlarged NMJ 4 in elav>Fak56RNAi. (A2, B2) Only dpERK expression is shown. Scale bars are 10 m. (C) Quantification of rel-
ative immunoreactivities of dpERK to HRP within the presynaptic zone. Note that elav>Fak56RNAi and elav>Fak56Y430F had 3.3- 
and 3.1-fold increases compared to elav>LacZ. (D, E) Images of NMJ 6/7 are shown as described in Figure 1. (E) Depletion of 
Fak56 activity in elav>Fak56RNAi results in NMJ overgrowth, which can be suppressed by the rlEMS698 allele (F). (F) Quantifica-
tion of NMJ 6/7 phenotypes for the control elav>LacZ, elav>Fak56RNAi, elav>Fak56RNAi;rlEMS698/+ and rlEMS698/+. Note that the 
rlEMS698 allele suppressed NMJ phenotypes in elav>Fak56RNAi. Asterisks indicate significant difference by Student's t test (p < 
0.05) and error bars represent the standard error of the mean (SEM).
Page 11 of 16
(page number not for citation purposes)



Neural Development 2008, 3:26 http://www.neuraldevelopment.com/content/3/1/26
Src42AE1, Src64BPI and rlEMS698 were obtained from the
Bloomington stock center. 1, 2 [34], LanA9–32, LanA216

[63] and wb4Y18 [64] have been previously described. The
various Fak56 alleles used in this study are described in
detail in Additional file 1. The transgenic lines elav-GAL4
(X) (used in neuronal Fak56 knockdown and overexpres-
sion), elav-GAL4 (III) (used in neuronal Fak56 rescue),

and UAS-LacZ were obtained from the Bloomington stock
center.UAS-Fak56 [28] and MHC-GAL4 [65] have been
described previously. The pUAST-Fak56RNAi construct
was generated by subcloning two inverted Fak56 cDNA
fragments (base pairs 629–1177) into the pUAST vector
and the knockdown effect was examined (Additional file
1F).pUAST-Fak56Y430F flies were generated from pUAST-

Modulation of Fasciclin II (FasII) levels by Fak56Figure 6
Modulation of Fasciclin II (FasII) levels by Fak56. (A-C) Expression of FasII (green) at neuromuscular junction (NMJ) 6/7 
in elav>LacZ (A1), elav>Fak56RNAi (B1), and elav>Fak56RNAi;rlEMS698/+ (C1). Co-stained horseradish peroxidase (HRP) is in 
magenta. (A2-C2) Only FasII staining is shown. Images in (A-C) come from a single section of the Z-stack confocal image. (D) 
Quantification of FasII levels relative to HRP immunoreactivity shown in (A1-C1). Note that elav>Fak56RNAi had a 33.5% 
reduction compared to elav>LacZ, which was restored significantly by removing one copy of rl in elav>Fak56RNAi;rlEMS698/+. 
Asterisks indicate significant difference by Student's t test (p < 0.05) and error bars represent the standard error of the mean 
(SEM).
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Model to depict Fak56 and ERK signaling and Fasciclin II (FasII) protein levels at neuromuscular junctions (NMJs)Figure 7
Model to depict Fak56 and ERK signaling and Fasciclin II (FasII) protein levels at neuromuscular junctions 
(NMJs). In restricting NMJ growth, the extracellular matrix signal laminin including the  subunit LanA is received by integrin 
receptors, including PS3 and  subunits. This signal is transduced through the association between Fak56 and Src, and in this 
process phosphorylation of Y430 Fak56 is essential. Activated Fak56 mediates signaling through suppressing ERK activation at 
NMJs and consequently upregulates the FasII protein level at NMJs, leading to the inhibition of NMJ growth. Those molecules 
(shown in grey) were not tested in this study.
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Fak56 by PCR based site-directed mutagenesis. To
enhance the Fak56RNAi transgene expression, embryos
from the elav-GAL4 (X) and pUAST-Fak56RNAi cross were
collected for 6 hours, kept at 25°C for 45 hours and
shifted to 30°C until late third instar.

Immunostaining
In all experiments, wandering late third instar larvae were
dissected for analysis of NMJ phenotypes. After dissection,
tissues were incubated in fixative solution (4% formalde-
hyde in 1× phosphate-buffered saline) for 20 minutes. For
immunostaining, primary antibodies used were against
synaptotagmin (mouse, 1:25; DHSB, Iowa City, IA, USA),
HRP conjugated with TRITC (rabbit, 1:100; Jackson
ImmunoResearch, West Grove, PA, USA), FAK [pY397]
(rabbit, 1:50; Biosource-Invitrogen, Carlsbad, CA, USA),
FasII (1D4, 1:100; DHSB) and dp-ERK-1/2 (mouse, 1:20;
Sigma-Aldrich, St. Louis, MO, USA). Alexa 488-, Cy3- and
Cy5-conjugated secondary antibodies and TRITC-phalloi-
din were used (Jackson ImmunoResearch).

Image processing and presentation
Confocal images were acquired using a Zeiss LSM 510
Meta and processed using Adobe Photoshop CS. Images
for quantification of NMJ branch length and bouton
number were from a projection of 10 z-sections of 6.5–8
m in total. To quantify the NMJ length and muscle area,
the images were analyzed by a measurement tool in Zeiss
LSM Image Examiner. For quantification of signal inten-
sity at NMJs, images were acquired under the same scan-
ning parameters. NMJs were outlined and the signal
intensity was calculated by histogram analysis in Adobe
Photoshop CS.

Electrophysiological recording
For sample preparation, dissected larval body walls
(including the central nervous system and motor axons)
were exposed in cold (4°C) HL3.1 Ca2+ free saline (70
mM NaCl, 5 mM KCl, 4 mM MgCl2, 10 mM NaHCO3, 5
mM trehalose, 115 mM sucrose, 5 mM HEPES pH 7.2)
[66]. Experiments were performed on muscle 6 of seg-
ment A3 in late third instar larvae. The segmental nerve
was cut near the ventral ganglion. Preparations were then
incubated in HL3.1 saline containing 0.2 or 1 mM CaCl2
for electrophysiological experiments at room temperature
(22°C). For stimulation and recording, a glass microelec-
trode (30–50 MO in resistance) filled with 3 M KCl was
impaled in the sixth muscle of the third abdominal seg-
ment to record the EJPs. The mEJPs occurring in the back-
ground within 200 seconds were obtained without any
stimulation on the segmental nerve. To evoke an EJP, the
segmental nerve was stimulated every 30 seconds through
the cut end with a suction electrode with 0.1 ms of pulse
duration at 2 times the threshold voltage. Once the
threshold voltage was reached, the size of EJPs remained

unchanged despite the increase in stimulating voltage.
Signals were digitized at 64 KHz by a PCI-6221 data-
acquisition card (National Instrument, Austin, Texas,
USA), and saved on an IBM compatible PC for analysis.
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Additional file 3
Ultrastructures of Fak56N30/K24 synapses. Electron micrographs of cross-
sections through a type-I bouton of muscle 6/7 in wild-type (A) and 
Fak56N30/K24 (B) larvae. Quantitative analyses reveal no difference for 
synaptic unltrastructures (C).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1749-
8104-3-26-S3.pdf]

Additional file 4
Electrophysiological recording of postsynaptic currents from wild-type and 
Fak56N30/K24 in 1 mM [Ca2+]. (A) Cumulative frequency plot reveals a 
significant shift in the distribution of mEJP amplitudes. (B) Representa-
tive traces and mean amplitudes of EJPs in wild-type and Fak56N30/K24.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1749-
8104-3-26-S4.pdf]

Additional file 5
BMP/Gbb signaling-independent mechanism of Fak56 in NMJ growth. 
No alternations of NMJ phenotypes were detected by introducing mutant 
alleles (sax4, witA12 and med13) for BMP signaling components into 
elav>Fak56RNAi.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1749-
8104-3-26-S5.pdf]

Additional file 6
ERK phosphorylation in Fak56CG1 mutant embryos. Expressions of phos-
pho-ERK appear grossly normal during Drosophila embryogenesis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1749-
8104-3-26-S6.pdf]
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