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Abstract
One of the most fascinating processes during nervous system development is the establishment of
stereotypic neuronal networks. An essential step in this process is the outgrowth and precise
navigation (pathfinding) of axons and dendrites towards their synaptic partner cells. This
phenomenon was first described more than a century ago and, over the past decades, increasing
insights have been gained into the cellular and molecular mechanisms regulating neuronal growth
and navigation. Progress in this area has been greatly assisted by the use of simple and genetically
tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is
dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates
how it can and has been used for this research. We describe the various cellular systems of
Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics,
and summarise identified molecular signalling pathways required for growth cone navigation, with
particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These
Drosophila-specific aspects are viewed in the general context of our current knowledge about
neuronal growth.

Background
The function of a nervous system depends on the proper
arrangement of its cellular elements, that is, neurons and
glia cells. Amongst these, neurons bear axonal processes
that establish synaptic contacts with other cells (neurons,
muscles or gland cells) that can be a significant distance
away. The transfer of information between these cells is
the key feature of nervous system function and is usually
mediated by action potentials that propagate along axons
and are passed on to other cells at synapses. The wiring of

such a system has to be precise and reproducible from
individual to individual, as was first highlighted by
Ramón y Cajal for the nervous systems of humans, other
vertebrates, and also invertebrates [1]. Such precision is
achieved during development through the guided growth
of axons along specific paths, a process clearly governed
by genetic mechanisms [2,3].

Essential work contributing to our current understanding
of axonal growth has been carried out in vertebrates and
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invertebrates alike, in many instances demonstrating the
conservation of principal mechanisms across the animal
kingdom. One strategy towards improving molecular
insights into axonal growth is the use of genetically tracta-
ble invertebrate model organisms, such as the worm
Caenorhabditis elegans or the fruit fly Drosophila mela-
nogaster. The strength of these species lies in their amena-
bility to genetic manipulation (see below) and the fact
that their nervous systems are composed of relatively low
numbers of cellular elements. Whereas specific neuronal
connections in vertebrates are usually formed by larger
groups of neurons that develop and act in parallel, these
connections are mostly represented by unique, individu-
ally recognisable neurons in invertebrates. Studies capital-
ising on such identifiable neurons, for example in insects,
have helped to unravel principles of neuronal circuit for-
mation. For example, the initial observation of guidepost
cells as stepping stones for axonal growth came from stud-
ies of the grasshopper limb bud [4]. The concept of pio-
neer guidance, which proposes that axonal tracts are
established by single pioneer neurons that are subse-
quently used as guidance cues for follower neurons, was
discovered in vertebrates [5]. However, work on insects
has helped to refine these concepts ('selective fascicula-
tion' and 'labelled pathways' hypotheses) [6-8] and to
contribute molecular players [9].

Once it was revealed that Drosophila embryos were experi-
mentally accessible and largely homologous to grasshop-
pers at the single cell level [10], insights that had to that
date mostly been gained on larger insects could be trans-
ferred into a genetically tractable model system. Such
work in Drosophila was further fuelled by the development
of new technologies, strategies and molecular tools, such
as specific anatomical antibody probes [11,12] and the
development of ever more sophisticated genetic screening
strategies [13]. Furthermore, such research has profited
enormously from the increasingly well organised research
environment of Drosophila, including the systematic gen-
eration and provision at a large scale of new genetic tools
and mutant fly stocks, and the improvement of access to
research-relevant information [14-18].

Undoubtedly, the use of Drosophila as a model system for
the study of axonal growth has been a prolific endeavour,
providing a plethora of novel and/or refined insights into
relevant molecular mechanisms, many of which have
been shown to be conserved in higher organisms. This
review will provide an overview of the major cellular
model systems established for the fly, our current insights
into Drosophila growth cones (the key structure executing
axonal growth), the housekeeping machinery regulating
the cytoskeletal dynamics required for axonal growth, and
the signalling events involved in axon guidance, focussing
on cellular models in the Drosophila embryo.

Models for axonal growth in Drosophila
One of the major strengths of Drosophila lies in its use as a
model where axonal growth can be studied in situ. A
widely used strategy for the unbiased discovery of neuro-
nal growth mechanisms in Drosophila is the search for
mutations that cause morphological aberrations of axonal
tracts or neuronal connections in situ. Subsequently, the
genes associated with such mutations can be identified,
and the molecular nature, function and type of interac-
tions of their products can be studied. To facilitate such
genetic screens and functional studies of gene action,
descriptions of axonal pathways and neuronal connec-
tions in wild-type animals have been provided for a
number of different neural systems in Drosophila. A selec-
tion of these cellular models is illustrated in Figure 1, and
some of their principal features will be discussed below.

First, neurons of all classes, that is, sensory neurons,
interneurons and motorneurons, have been used for stud-
ies of axonal growth in Drosophila (red, green and blue in
Figure 1, respectively). The principal structures of verte-
brate and invertebrate neurons have been proposed to be
homologous [19], despite there being certain organisa-
tional differences (Figure 2). These differences may be
associated with deviations in some aspects of axonal path-
finding behaviours (details in Figure 2). For example, in
the vertebrate trunk, sensory neurons are (pseudo-)unipo-
lar and located in the dorsal root ganglia derived from a
migratory stream of neural crest cells [20]. In contrast, cell
bodies of sensory neurons in Drosophila are usually bi- or
multipolar and are born and located in the periphery
close to the sense organs they innervate or represent.
Therefore, sensory axons in Drosophila grow unidirection-
ally towards the central nervous system (CNS), whereas
sensory neurites in vertebrates bifurcate and grow bidirec-
tionally both towards the CNS and into the periphery. A
clear exception to this rule are the ocellar photoreceptors
of Drosophila (located on the dorsal surface of the head;
Figure 1c,d), which do not form axons themselves, but are
connected to the brain via interneurons [21]. Somata of
inter- and motorneurons are commonly multipolar in ver-
tebrates and located in the synaptic region (grey matter;
Figure 2b). In contrast, cell bodies of comparable neurons
in Drosophila are unipolar and localised outside the neuro-
pile within the cortex of the neuromeres. Finally, in verte-
brates, axons ascending and descending to/from the brain
are located in defined tracts in the white matter (1–3 in
Figure 2b) where they become heavily myelinated,
whereas comparable axons in Drosophila are located in the
synaptic neuropile and usually lack glial ensheathment.
Hence, mechanisms placing ascending/descending axons
in the Drosophila neuropile might be distinct from those
placing them in the white matter in vertebrates. Alterna-
tively, if the same guidance cues are utilised, their spatial
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Neurons used for studies on neuronal growth at different stages of Drosophila developmentFigure 1
Neurons used for studies on neuronal growth at different stages of Drosophila development. (a,c) Horizontal views of a Dro-
sophila larva and adult fly, respectively, illustrating the position of the CNS (grey and cream) in relation to other body struc-
tures. (b,d) Three-dimensional extracts from the areas boxed in dark blue in (a,c), respectively. The cell body area of the CNS 
(cortex (CX)) is shown in light grey, and the neuritic/synaptic area (neuropile (NP)) in cream (only relevant neuropile struc-
tures are shown in (b,d)). Black arrows point anterior, morphological structures are annotated in colour code, and neuronal 
classes are explained in the box at bottom right. The various model neurons are marked with numbers in yellow circles, 
explained below. Many neurons of the larval trunk can be studied from their birth in the embryo through to the mature synap-
tic stage. Amongst these, motorneurons (1) project towards the dorsal zone of ipsilateral or ipsi- and contralateral connectives 
(where they form dendrites; double chevron), from where they enter specific branches of peripheral nerves leading towards 
their target muscles, on which they form neuromuscular junctions (NMJ; yellow circles represent chemical synapses). Projec-
tions of larval interneurons (2) are restricted to the neuropile. Sensory neurons of the trunk (3) project along tracheal 
branches and motoraxons towards the ventral nerve cord (vNC) where they innervate the ventral domain of connectives 
[192,195,196,198-200,236]. Sensory neurons in the embryonic trunk have been used, for example, to study the actin-microtu-
bule linker molecule Short stop, signalling through Robo or Notch receptors, or the spatial arrangement of axons in the neuro-
pile [197,202,203,255]. Projections of neurons 1, 2 and 3 in the neuropile of the ventral nerve cord can be classified with 
respect to their anteroposterior extension within the segment (white curved arrow) or across segments (black curved arrow), 
their dorsoventral and mediolateral position in connectives (green and red double arrows, respectively), their ipsilateral (neu-
ron 3) versus contralateral (neurons 1 and 2) nature, and their projection through anterior (white arrowhead) versus poste-
rior commissure (black arrowhead; see details in 'Signalling mechanisms involved in axonal pathfinding in Drosophila' above). In 
the embryonic/larval head region (4), the Bolwig organ has been used for studies of neuronal growth. It contains somata of 12 
photoreceptor cells [306], the axons of which form the Bolwig nerve projecting over the antennal and eye discs via the optic 
stalk into the optic lobe anlage (OLA) [26,307]. The Bolwig nerve is joined by successively outgrowing waves of axons of 
photoreceptor neurons (5), which are specified in the eye disc during larval and pupal stages. The optic lobe pioneer neuron 
(6), a projection neuron of embryonic origin, seems to be used as a guide within the OLA by the Bolwig nerve and photo-
receptor axons [308,309]. Sensory neurons of the adult trunk (7) develop de novo during larval and pupal stages (with a few 
exceptions) [310] and terminate in the vNC neuropile (T1-3 and A indicate the three thoracic and fused abdominal segments). 
They can be analysed from the time of birth through to the fully differentiated stage [311,312], and have been used to study 
features, such as segment-specific growth regulation (homeotic genes), or the influence of adhesive interactions (Dscam), 
axonal transport (cut up, the dynein light chain) or of size alterations (gigas) on neuronal growth behaviour [311,313-315]. Pho-
toreceptor cells in the adult compound eye (8) form a precise retinotopic map in the optic lobe (OL: grey 1, lamina; 2, medulla; 
3, lobula; 4, lobula plate) established during larval (see neuron 5) and pupal stages, and the genetic mechanisms regulating these 
precise growth decisions are beginning to be unravelled [316-318]. Interneurons postsynaptic to photoreceptor neurons are 
well described [317,319] but seem not to have been used for studies of growth mechanisms so far, with the exception of a 
group of 20–30 dorsal cluster neurons (9; targeted by atoGal4-14A), which form dendrites in the ipsilateral optic lobe and 
project through the dorsal commissure to innervate the contralateral lobula and medulla [320-322]. Olfactory neurons in the 
third antennal segment (10) and the maxillary palp (not shown) project from the antenna into the antennal lobe (AL) where 
they terminate in specific glomeruli in a reproducible pattern correlating with the class of odorant receptor they express; the 
genetic regulation of this growth behaviour is under investigation [39]. The major output from the AL is constituted by projec-
tion neurons (11), which are postsynaptic to olfactory neurons and innervate the lateral horn (red double chevron) and the 
calyx (blue double chevron), a dorsal structure of the mushroom bodies (MB) [39]. The mushroom bodies are the brain struc-
tures responsible for olfactory learning in Drosophila [323,324], and its intrinsic interneurons (Kenyon cells (12)) project 
through the calyx and pedunculus where many of them bifurcate to project into the vertical α/α'-and the horizontal β/β'/γ-
lobes, simultaneously [325]. The large giant fibre neuron (13) connects the optic system via a large diameter axon with 
motorneurons in the second thoracic segment (14), innervating the tergotrochanteral muscle (TTM; responsible for the visu-
ally induced jump escape response) via chemical and electrical (orange triangle) synapses [326]. Giant fibre axons grow out 
during late larval/pupal stages and have been used to study growth regulatory mechanism, such as the influence of Rho-like 
GTPases or the role of the E2 ubiquitin ligase Bendless [326]. Ocellar photoreceptor neurons do not send out their own axons 
but are connected to the brain via large interneurons, the cell bodies of which are located in the brain originally, but migrate 
into the periphery during pupal development (15). The pathfinding of these interneurons depends on a set of short-lived pio-
neer neurons that, in turn, require the extracellular matrix molecule laminin, the transmembrane receptor neurotactin and its 
ligand Amalgam for proper outgrowth [21,239,241]. Further potentially attractive models for studies of neuronal growth that 
are not shown here are auditory sensory neurons [327], and axonal fascicles in the ventral nerve cord of late Drosophila larvae 
representing paused interneurons of the future adult CNS (not shown) [209].
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Comparing principal features of neuronal organisation and growth in Drosophila (larva) and vertebrates (human)Figure 2
Comparing principal features of neuronal organisation and growth in Drosophila (larva) and vertebrates (human). (a) Saggital 
section (one body half; dotted line is midline) through the larval brain and ventral nerve cord (compare Figure 1a,b). (b) Sagg-
ital section through the adult human brain and one half of the spinal cord. Symbols are explained in the box below. Whereas 
axons of unipolar inter- and motorneurons in Drosophila have to grow into the synaptic area where they form dendrites, com-
parable neurons in vertebrates are multipolar and locate themselves in the synaptic area. All Drosophila motorneurons locate 
their dendrites in the dorsal neuropile, regardless of their soma position (see 'i' versus 'ii') [236]. Vice versa, sensory somata in 
Drosophila are located next to their dendrites, whereas cell bodies of most sensory neurons in vertebrates are grouped 
together in the dorsal root ganglia. Sensory output (dark grey) and motor input areas (bright grey) are inverted in both phyla, 
which might be explained through a general dorsoventral body axis inversion between vertebrates and arthropods [328], that 
is, not represent an organisational difference between their CNS. Ascending/descending axons in Drosophila are non-myeli-
nated and project through the synaptic area (compare neurons 2 and 13 in Figure 1) where they take on characteristic posi-
tions [236,329]. In vertebrates, ascending/descending axons are myelinated and positioned outside the synaptic area, grouping 
into characteristic tracts in defined positions of the white matter; examples named here: fasciculus cuneatus (1), tractus corticos-
pinalis lateralis (2; pyramidal tract; only descending), and tractus spinothalamicus lateralis (3).
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expression must differ considerably between vertebrates
and arthropods.

Second, Drosophila is a holometabolous insect that exists
as a maggot during larval life but is substantially reorgan-
ised into the adult fly during metamorphosis at the inter-
mediate pupal stage. This process is not dissimilar to
metamorphic events known from lower vertebrates, such
as amphibians. One phase of de novo axonal growth takes
place in the embryo, and a vast number of these cellular
elements are maintained into the adult stage, albeit being
remodelled during the pupal period [22]. However, to
adapt to the far more complex behavioural repertoires of
the adult, a second phase of de novo neurogenesis and
axonal growth is initiated during larval life and completed
during the process of metamorphosis. There is abundant
evidence that common cellular and molecular mecha-
nisms for axon guidance apply at both stages, allowing us,
in many instances, to study the same molecules with the
multiple techniques and cellular systems available for
both stages of axonal growth in Drosophila [3].

Cellular models from both developmental phases (Figure
1a,b versus 1c,d) have been used to screen for genes
involved in neuronal growth regulation. At embryonic/
larval stages, genetic screens have mostly been based on
analyses of animals bearing mutations that were induced
by chemical treatment, radiation or via transposable ele-
ments. Morphological read-outs used in these screens
have included motornerves, projections in the CNS, or
sensory projections in the trunk or head (for example,
Bolwig's organ; 1–4 in Figure 1) [23-32]. Some screens
have been carried out on adult flies using as read-outs the
giant fibre system (13 and 14 in Figure 1) or general brain
morphology [33,34]. However, since many mutations
cause embryonic or larval lethality, the utility of adult ani-
mals for genetic screens is limited. To overcome this prob-
lem, mosaic strategies have been used in which only
specific tissues express the mutant phenotype and can be
maintained by an otherwise normal body [13]. Such
mosaic screens have been successfully carried out using
adult photoreceptor axons as read-outs (8 in Figure 1)
[35,36]. A further refined mosaic strategy is the MARCM
technique, in which homozygous mutant neurons can be
visualised at the single cell level, surrounded by hetero-
zygous, non-mutant cells [37]. This technique has been
used to study and screen for growth aberrations of mush-
room body, olfactory and photoreceptor neurons (8, 10
and 12 in Figure 1) [38-40]. Based on these various
screens in embryonic, larval or adult individuals, many
mutations that result in defective axon growth have been
identified [3]. The gene functions underlying a number of
these mutations will be discussed below (see 'Regulators
of actin dynamics in Drosophila growth cones' below).

Studies of neurons in situ have the essential advantage that
they address the relevance of genetic mechanisms for
developmental processes in a natural context. However,
the ability to utilise precise and well-controlled pharma-
cological, physiological or imaging methods in such in
situ systems is limited. To address these shortcomings, cul-
tures of primary neurons, obtained from embryonic or
larval tissues, have been established in Drosophila. These
primary culture systems have been used successfully to
demonstrate and/or analyse various phenomena, such as
promotion of axonal growth by the neural cell adhesion
molecule (N-CAM) homologue Fasciclin 2 or the extracel-
lular matrix molecule laminin [41-43], induction of
axonal fasciculation through neuronal activity [44],
dependence of axonal growth on endocytosis [45,46], or
cAMP-dependent neurotransmitter release from growing
neurons [47]. All of these phenomena are likely to be of
relevance to neuronal growth in situ [9,21,48], and the
established culture systems provide valuable additional
means for their study.

Taken together, the Drosophila system provides a wide
range of cellular models to be used for studies of axonal
growth. In addition, a number of models exist for other
forms of neuronal growth, such as dendritic arborisation
or the branching and plasticity of synaptic terminals [49-
52]. However, these systems will not be considered here.

Growth cone dynamics in Drosophila
Principal structure and function of growth cones
The elongation of an axon is led at its tip by a highly
dynamic structure, the growth cone, first described and
named by S Ramón y Cajal ("cono de crecimiento") and
then confirmed in live studies by RG Harrison [53-55].
Growth cones navigate along stereotypical paths, steadily
elongating the axon by adding new structural components
such as microtubules and membrane to its tip [56]. Just
like the leading front of migrating cells, growth cones dis-
play actomyosin-containing filopodia and lamellipodia,
focal contacts, a dynamic population of microtubules,
and cell polarity markers such as Par-3 and -6 [57-62]. In
contrast to migrating cells, where stress fibres pull the
entire cell forward, neuronal cell bodies generally remain
behind when growth cones advance, remaining con-
nected by the steadily elongating axons, the core of which
contains bundled, stable microtubules representing the
highways for axonal transport.

It has been shown for growth cones of many species, that
their guidance requires actin dynamics in the growth cone
periphery [55,59,60,63]. The peripheral filamentous actin
cytoskeleton executes a continuous, myosin-driven retro-
grade flow that involves ATP-dependent addition of glob-
ular actin to actin filaments at their barbed ends (pointing
towards the growth cone's periphery), a gradual change of
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actin-bound ATP to ADP, and hydrolysis or severing at
their pointed ends (pointing towards the growth cone's
centre) [64-66]. This process of actin assembly and disas-
sembly and its organisation into lamellipodial networks
and filopodial bundles is regulated by a complex molecu-
lar machinery [65,67-69], which we detail below in the
context of Drosophila components (see 'Regulators of actin
dynamics in Drosophila growth cones').

Whereas growth cone guidance crucially depends on actin
dynamics, growth cone advance depends on microtu-
bules. This is clearly demonstrated by the persistence of
axonal growth in the presence of actin polymerisation
blockers, in vertebrates as well as in Drosophila [55,70-72],
whereas pharmacological destabilisation of microtubules
causes growth cone retraction [55,73]. Furthermore,
extending axons can even be induced to turn in the
absence of filamentous actin if they are exposed to an elec-
trical field [74]. Microtubules in the axon shaft and central
zone of growth cones are stable and bundled, whereas sin-
gle unstable microtubules elongate into and retract from
the peripheral actin-rich zone in a highly dynamic fash-
ion. These microtubules can be trapped or stabilised
through signals in the growth cone periphery, thus deter-
mining the direction in which microtubules of the axon
shaft will extend [55,58-60,63]. Microtubule growth and
shrinkage is, per se, an autocatalytic process [75-77]. How-
ever, a number of cellular factors regulate microtubule
dynamics, as detailed below in the context of Drosophila
components (see 'Regulators of microtubule dynamics in
Drosophila growth cones').

Growth cones in Drosophila
Initial work on Drosophila growth cones dates back more
than 20 years when growth cones were first described inci-
dentally in a study on the role of the activity regulator
Maleless/Nap in primary neurons cultured from the larval
nervous systems [78]. In vivo observations carried out on
growth cones of primary neurons in culture demonstrated
classifiable shape differences (longer filopodia of ventral
ganglion-derived neurons versus those derived from
brain), and also established strategies to measure their
dynamics [79]. These strategies were later used to demon-
strate that genetic or pharmacological alterations of cAMP
levels influence growth cone dynamics [80]. Analyses of
dye-filled motorneurons in Drosophila embryos demon-
strated that their growth cones make characteristic and
reproducible directional decisions when advancing in the
CNS and periphery [81]. In agreement with this finding,
ultrastructural studies in the developing embryonic Dro-
sophila CNS showed that filopodia of pioneering growth
cones establish close contacts with characteristic sets of
cells in their immediate environment [82]. In vivo studies
of the identified RP2 motorneuron in the same context
revealed that these growth cones grow at rates comparable

to other animal model systems and carry out a set of char-
acteristic shape changes along their reproducible paths
[83]. Follow-up studies using this system showed that
genetic removal of the Roundabout receptor (see 'Medi-
olateral patterning of longitudinal fascicles' and 'Growth
cone guidance at the Drosophila CNS midline' sections
below) in these growth cones led to an increase in the
length and persistence of filopodia [84]. In vivo observa-
tions on growth cones of a different set of motorneurons
(ISNb) demonstrated that their filopodial dynamics and
guidance are regulated through GTPases of the Rho-family
and their downstream effectors [85,86]. Further studies
on embryonic motorneurons have shown that growth
cones of pioneer neurons display a significantly more
complex shape than their follower axons [9], a finding
that is consistent with descriptions of the growth cones of
pioneer/follower neurons in vertebrates [87,88]. In the
Drosophila system, this behaviour is regulated by the N-
CAM homologue Fasciclin 2 [9]. Motorneuronal growth
cones have also been studied in their transition phase into
a characteristically shaped neuromuscular junction. Such
analyses have revealed how growth cones, which initially
explore a wider muscle field, transform into precisely tar-
geted neuromuscular terminals [89,90]. Ultrastructural
analyses of such growth cones have shown how filopodia
of identified motorneurons establish intimate contacts
only with their specific target muscles, and that this proc-
ess is regulated through the presentation of specific cell
recognition molecules [91]. Consequently, ablation of
such target muscles changes the behaviour of growth
cones in their target area [92].

Drosophila growth cones display the characteristic hall-
marks of those in other systems, such as highly dynamic
filopodia, enrichment of microtubules at their core and
the presence of filamentous actin in their periphery (Fig-
ure 3). Yet, to date, subcellular studies of Drosophila
growth cones are fairly sparse. Most of the insights into
axonal growth mechanisms in Drosophila (as reviewed
below) have been derived from analyses of the axonal
projection defects found in the mature embryonic or adult
nervous system in mutant animals or under experimen-
tally manipulated conditions. There are only few descrip-
tions of the behaviours of growth cones during the axon
elongation phase in these animals.

Regulators of actin dynamics in Drosophila growth cones
The morphological studies of Drosophila growth cones
described above ('Growth cones in Drosophila' section)
suggest that they possess the same cytoskeletal machinery
as found in other model organisms ('Principal structure
and function of growth cones' section). In this section we
summarise and speculate on the (potential) factors regu-
lating cytoskeletal dynamics in Drosophila growth cones.
An overview of these components is given in Figure 3 and
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Drosophila growth cones and the (potential) factors regulating their cytoskeletal dynamicsFigure 3
Drosophila growth cones and the (potential) factors regulating their cytoskeletal dynamics. (a) Growth cones of aCC (arrows) 
and RP2 motorneurons (double chevrons; cell bodies named) in two consecutive segments of the trunk of a Drosophila embryo, 
stained with a cell-specifically expressed membrane marker. (b,b') Cultured Drosophila growth cone stained for microtubules 
(green) and filamentous actin (magenta); some filopodia lack microtubules (curved arrows), whereas others are deeply invaded 
(arrow heads indicate microtubule tips). (c) Schematic representation of the cytoskeletal organisation in Drosophila growth 
cones as extrapolated from work on growth cones in other species (detailed in the section 'Principal structure and function of 
growth cones'): veil-like lamellipodia (black arrowhead) contain mesh-like networks of actin filaments (randomly oriented red 
lines), whereas pointed filopodia (white arrowhead) contain bundled actin filaments (parallel red lines); microtubules (blue 
lines) are bundled in the axon, but single splayed microtubules extend into the periphery of the growth cone (curved white 
arrows indicate splayed microtubule tips), reaching into filopodia, as was similarly reported for growth cones of other species 
or migrating cells [63,330]. (d) Details of the boxed area in (c); circled numbers correlate with the numbers in Table 1 and rep-
resent the following molecular activities: 1, actin filament nucleation by Arp2/3 (which subsequently stays with the pointed 
ends); 2, actin filament nucleation and elongation by formins (which stay with barbed ends); 3, actin monomer binding; 4, 
barbed-end capping; 5, pointed end-depolymerisation/severing; 6, actin filament bundling; 7, retrograde flow of actin cytoskele-
ton; 8, microtubule plus end binding; 9, microtubule stabilising; 10, actin-microtubule linkage. Black straight arrows indicate 
growth of actin filaments or microtubules, grey straight arrows shrinkage, black curved arrows addition of actin monomers, 
grey curved arrows removal of actin monomers or filamentous fragments, hatched arrows indicate direction of retrograde 
actin flow, and the grey dashed curved double arrow linkage of actin and microtubules. (e) Current view of the effectors 
downstream of the Slit receptor Robo mediating repulsion from the midline of the ventral nerve cord. Robo (top right) 
habours five immunoglobulin domains (half elipses) and three fibronectin type III domains (blue boxes) extracellularly, and four 
conserved cytoplasmic (CC) domains (light to dark green) intracellularly. Robo induces growth cone repulsion by controlling 
cytoskeletal dynamics via either Abelson kinase (Abl) and Enabled (Ena), or Rac activity. Ena binds at CC2 and acts most likely 
through Chickadee/Profilin on actin dynamics. Abl binding to Robo at CC3 influences actin dynamics via Capulet and microtu-
bule dynamics via the +TIP protein Chromosome Bows (Chb/Orbit/MAST). Simultaneously, Abl phosphorylates CC1 to antag-
onise Robo function. The regulation of Rac activity through Robo occurs through CC2/3 recruitment of the SH3-SH2 adaptor 
molecule Dreadlocks (Dock) which, in turn, activates Rac through both Pak and the GEF Sos. In parallel, active Robo can influ-
ence Rac activity via the binding of RhoGAP93B (vilse/CrGAP) to CC2, but it remains unclear whether RhoGAP93B is posi-
tively or negatively regulated by Robo. Paradoxically, both decrease and increase of Rac activation levels can cause midline 
crossing, suggesting that: Rac might influence other effectors to cause repulsion; a precise Rac activation level is required to 
mediate Slit-induced repulsion; or a sequential modification of Rac in response to Robo activation has to occur, such as an ini-
tial role to prevent extension towards the source of the repellent and another role to encourage extension away from the Slit 
source. Calmodulin and GEF64C have additionally been identified as modifiers of Robo activity, although it is not clear yet how 
they influence Robo signalling (calmodulin possibly through Chic).
Table 1.

Several factors have been reported to be able to seed new
actin filaments, a process called 'nucleation'. One of these
factors is the Arp2/3 (actin-related protein) complex,
which is composed of seven subunits. The genes encoding
all its subunits have been identified in Drosophila and
some of them have been functionally assessed [93,94].
Loss of function of the genes Suppressor of profilin 2
(ArpC1) and/or Arp66B (Arp3) causes severe axonal pro-
jection defects when analysed at late embryonic stages
(Figure 4, xxxix) [95]. Another independent nucleator of
actin filaments, Spire, has been described for Drosophila
[96] but seems not to be localised in the nervous system
[14]. As opposed to Arp2/3-complex or Spire, members of
the Formin family of proteins are nucleators and, in addi-
tion, effective barbed end-binding elongators of actin fila-
ments [97]. Of the six Drosophila Formins [98], DAAM
(dishevelled associated activator of morphogenesis) is
expressed pan-neurally while two others, CG32030 and

CG32138, are specifically expressed within midline glia
(the AA142 transposon insertion, a classic midline glia
marker, is inserted within CG32030; Richard Tuxworth
and GT, unpublished observations). The other Formins,
cappuccino, diaphanous and formin3, do not appear to be
expressed at detectable levels in developing neurons [98].
No neural phenotypes have yet been associated with
mutations in either of these genes, but ectopic expression
of Formin 3 in the CNS can induce strong pathfinding
phenotypes [98]. Thus, based on our current knowledge,
the Arp2/3 complex and DAAM are the potential actin
nucleators in Drosophila growth cones. Of these, Arp2/3 is
unlikely to regulate subsequent actin filament elongation,
since it stays with the pointed ends of elongating actin fil-
aments, which move away from the very cell periphery
after nucleation has occurred [68,97,99]. Instead other
factors have been proposed to facilitate actin filament
elongation. Likely candidates in Drosophila are DAAM (see
above) or Enabled, the Drosophila member of the Ena-
bled/VASP (vasodilator-stimulated phosphoprotein) fam-
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Table 1: Direct regulators of the cytoskeleton with (potential) functions at growth cones

Gene name Common synonyms Direct regulators References

Actin filament nucleation and elongation (1 + 2)
Suppressor of profilin 2 (Sop2) ArpC1 WASp (+), SCAR/WAVE 

complex (+; containing: 
SCAR/WAVE, Hem/kette, Sra-
1/CYFIP, Abi, SIP1/HSPC300)

[95,149]

Actin-related protein 66B (Arp66B) Arp3
Arp14D, Arc-p34, Arpc3A/3B, Arc-p20, p16-Arc Arp2, ArpC2-C5 [93,94]
dishevelled associated activator of morphogenesis (DAAM) NA ? *
enabled (ena) ENA/VASP Abelson (-), Dlar (+) [100,101,164]

Actin monomer binding (3)
capulet (capt) acu, CAP Abelson (+) [103]
ciboulot (cib) NA ? [102]
chickadee (chic) profilin, sand ena (+) [101,164]
twinfilin (twf) NA ? [104]

Barbed-end capping (4)
capping protein α (cpa) NA ? [109]
capping protein β (cpb) NA ? [333]

Pointed-end depolymerisation/severing (5)
twinstar (tsr) ADF/cofilin LIMK1 (-), ssh (+) [111]
flightless I (fliI) (gelsolin family) ? [115]
quail (qua) villin-related (gelsolin family) ? [116]

Actin filament bundling (6)
singed (sn) fascin ? [126]
α Actinin (Actn) flightless A ? [128]
Fimbrin (Fim) NA ? [334]
cheerio (cher) filamin ? [129]

Retrograde flow of filamentous actin (7)
zipper (zip) myosin heavy chain ? [121]
spaghetti squash (sqh) myosin II light chain Strn-Mlck (+), Mbs/myosin 

phosphatase (-)
[119,120]

Microtubule plus end binding (+TIPs) (8)
CLIP-190 NA ? [152]
chromosome bows (chb) CLASP, Orbit/MAST Abelson (+) [153]
eb1, CG18190, CG32371 NA ? [155]
APC-like (Apc) Apc1 ? [154]
Apc2 NA ? [154]

Microtubule stabilising (9)
futsch MAP1B, mAB22C10 Fmr1/fragileX/fmrp (-) [163,335]
tau NA ? [161]

Microtubule-actin linkage (10)
short stop (shot) kakapo, groovin ? [168]
pod-1 NA ? [169]

The table lists official gene names according to FlyBase [14] (first column), examples of commonly used synonyms (second column; NA, not 
applicable), molecules reported to regulate the respective gene/protein directly (third column; '+', activating; '-', down-regulating), and 
representative references (fourth column; for more information refer to FlyBase; preferentially those references are listed that link to the nervous 
system). Bold headings indicate a functional assignment of the factors listed below, and numbers refer directly to the circled numbers in Figure 3. 
*See section 'Regulators of actin dynamics in Drosophila growth cones' for more detail.
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ily of proteins, which is a direct target of the cytoplasmic
Abelson tyrosine kinase in the context of neuronal growth
[100,101]. Further factors regulating actin assembly are
molecules that bind monomeric actin, such as Capulet,
Ciboulot and Profilin/Chickadee, all of which are essen-
tial for neuronal growth regulation in Drosophila [101-
103]. A further actin monomer-binding molecule, Twinfi-
lin, is likely to be expressed in the nervous system, but no
data exist concerning its cellular function [104].

Profilin/Chickadee has been shown to interact with Cal-
modulin [105], suggesting [Ca2+]i may influence its activ-
ity. Consistent with this observation, growth cones of
Drosophila, like those of other species, show measurable
changes in local calcium concentration [106-108].
Barbed-end capping proteins are typical inhibitors of
actin polymerisation. For Drosophila, the capping proteins
Cpa and Cpb have been reported, but their role in the
nervous system has yet to be addressed [109].

While actin filaments elongate at their barbed ends, they
are severed and/or depolymerised at their pointed ends,
and a number of factors have been assigned to this process
[110]. One of these factors is ADF/cofilin (Twinstar in
Drosophila), the activity of which is directly regulated by
LIM kinase and the Slingshot phosphatase in vertebrate
growth cones and the developing Drosophila nervous sys-
tem alike [111-113]. Another group of potent filamentous
actin severing molecules comprises members of the gelso-
lin family [114], at least two of which have been identified
in Drosophila, flightless I and quail [115,116]. However,
nothing is known about their potential requirement for
axonal growth.

Distal elongation and proximal shortening of actin fila-
ments, generally referred to as 'treadmilling', would
potentially lead to a constant outward movement of actin
filaments. However, such movement is antagonised by
myosin motor proteins, which produce a steady retro-
grade/reaward flow of the actin network. This action of
myosin II plays an important regulatory role downstream
of guidance-related signalling events [58,117,118].
Accordingly, two subunits of non-muscle myosin, the
heavy chain (Zipper) and the regulatory light chain (Spa-
ghetti-squash), and the direct regulators myosin light
chain kinase (MLCK) and myosin light chain phosphatase
have been implicated in neuronal growth in Drosophila
[119-121].

Accumulating evidence suggests that the set of actin regu-
lators involved in lamellipodia formation (producing
branching networks of filamentous actin) is not congru-
ent to those in filopodia (bundled linear actin filaments)
[69]. The typical parallel bundling of actin filaments in
filopodia can be initiated by the actin polymerisation fac-

tor Enabled/VASP in collaboration with Formins
[122,123], and the principle involvement of both these
factors in axonal growth of Drosophila has been reported
(see above). Another suggested mode of filopodium for-
mation is through bundling of filamentous actin via the
powerful cross-linker Fascin [124,125]. Singed, the Dro-
sophila orthologue of Fascin, has been shown to influence
neuronal growth [126]. Other factors cross-linking actin
filaments, such as α Actinin, Fimbrin or Filamin (cheerio
in Drosophila) are able to substitute Fascin in the context
of Listeria propulsion [127]. In Drosophila, α Actinin is
expressed in the developing CNS [128], and cheerio has
been associated with associative learning [129], but none
of these factors has been studied in the context of neuro-
nal growth so far [14].

The complex machinery mediating actin dynamics in
growth cones is essentially orchestrated by Rho-family
GTPases [130,131], six of which have been reported for
Drosophila. Of these, Rac1, Rac2 and Mtl have an overlap-
ping requirement during the regulation of axon extension,
branching and guidance (Figure 4, xxxvi and xxxvii)
[132,133]. Cdc42 is similarly involved in growth cone
guidance, but its functions appear to involve downstream
effectors different from those of Rac1 (for example, Pak)
[85,86,134]. RhoA has been shown to inhibit neuronal
growth in Drosophila [135], whereas little is known about
the other two Rho-like GTPases, RhoL and RhoBTB [136].
Many of the factors shown to act up- or downstream of
Rho-GTPases in vertebrates have been identified in Dro-
sophila and their functions in neuronal growth were
revealed by their mutant phenotypes. Thus, GTPases are
active in a GTP-bound state, promoted by RhoGEFs (gua-
nine nucleotide exchange factors), and inactive in a GDP-
bound state, catalysed by RhoGAPs (GTPase activating
proteins) [131]. The Drosophila genome contains 20 pre-
dicted RhoGAPs and 22 RhoGEFs [137-139]. At least three
RhoGEFs, Still life, Gef64C and Trio, have been associated
with neuronal growth regulation of the axons of
motorneurons, photoreceptors, and neurons in the ven-
tral nerve cord (Figure 4, xxxviii) [138,140-142]. Three of
the 20 RhoGAPs, RhoGAP-71E1, RhoGAP-50C14 and
RhoGAP-16B12/p190, show neuronal growth pheno-
types when assayed in the mushroom body neuropile
(MB in Figure 1d) [139], and RhoGAP93B/CrGAP/Vilse is
involved in midline crossing of axons (see 'Growth cone
guidance at the Drosophila CNS midline' below)
[143,144]. An involvement in neuronal growth regulation
has also been demonstrated in various cellular contexts
for typical effectors of Rho-like GTPases, such as p21-acti-
vated kinase (PAK) and its closely associated partner, the
SH2/SH3 adaptor protein Nck (Dreadlocks = Dock in Dro-
sophila), the RhoA effector Rho-kinase (Drok or Rock in
Drosophila), and the Cdc42 effector WASP, a direct activa-
tor of the Arp2/3 complex [95,141,145,146]. WASP's par-
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Representative embryonic mutant phenotypes of axonal projections in the ventral nerve cordFigure 4
Representative embryonic mutant phenotypes of axonal projections in the ventral nerve cord. Images of ventral nerve cords in 
horizontal view (dorsal up) of embryos that are wild type, mutant or display targeted expression of genes in subsets of neu-
rons. Genotypes are indicated in black at the top, antibody stainings in grey (abbreviations: Robo, Roundabout; Comm, Com-
missureless; Fas2, Fasciclin 2; Drl, Derailed; Rep, reporter gene; eg, eagle; ftz, fushi tarazu; ap, apterous; unc5, uncoordinated 5; 
NCad, N-Cadherin; gcm, glia cells missing; nrg, neuroglian; nrt, neurotactin; "X ÷ Y", expression of gene Y driven by the promoter 
of gene X). BP102 antiserum labels the complete neuropile (i), consisting of two connectives (asterisks) and, per segment, an 
anterior (white arrow) and posterior (black arrow) commissure. At stage 16 Fasciclin 2 labels three prominent longitudinal fas-
cicles per connective (ix). (ii-viii) Expression patterns of genes involved in midline crossing and, below (x-xvi), respective loss-
of-function phenotypes (see text for details). (xvii-xxii) Regulation of growth through the anterior versus posterior commis-
sure, with loss of posterior (xvii) or anterior (xviii) commissure, specific expression of Derailed (xix) in anterior and its ligand 
Wnt (xx) in posterior commissure, and shift of posterior commissure neurons (eagle-Gal4; xxi) to the anterior commissure 
(white arrow head in xxii) upon Derailed expression in their axons. (xxiii) Same eagle-Gal4 neurons partially lack commissural 
projections in netrin A+B mutant background (compare white arrowhead in (xv)). (xxv-xxxi) Detailed phenotypic studies using 
identified apterous-Gal4 neurons, which project transversely to the medial connectives where they form a longitudinal fascicle 
(xxv); as indicated by white arrows, they stall prematurely upon Derailed expression (xxvi), project across the midline upon 
Comm expression (xxvii), collapse towards the midline in robo mutant background (compare x), shift to lateral positions upon 
Robo2+3 expression (xxix), project out of the CNS upon Unc5 expression (xxx), or turn prematurely from transverse into 
longitudinal direction in N-cadherin mutant background (xxxi). (xxiv, xxxii). Connectives are affected upon ablation of longitudi-
nal pioneer neurons (xxiv) or longitudinal glia cells (xxxii). (xxxiii-xl) Various neuropile phenotypes in embryos mutant for 
transmembrane molecules (xxxiii-xxxv) or factors involved in cytoskeletal regulation (xxxvi-xl). Images were taken, with per-
mission, from [241] (i, xxxv), [253] (ii-iv, xii, xxix), [207] (v, top), [331] (v, bottom), [259] (vi), [266] (vii, xv), [225] (viii), [244] 
(ix, xxxiii), [271] (x, xi, xiv), [23] (xiii, xvii), [212] (xvi, xxx), [263] (xviii), [208] (xix, xxi, xxii, xxv-xxvii), [332] (xx), [267] (xxiii), 
[219] (xxiv), [277] (xxviii), [226] (xxxi, xxxiv), [223] (xxxii), [132] (xxxvi-xxxviii), [95] (xxxix, xxxx). Images were modified to 
grayscale and adapted to size.
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alogue SCAR in itself is not an immediate effector of
GTPases, but the WAVE/SCAR complex (containing
SCAR, CYFIP, Kette, Abi and HSPC300) can be targeted by
Rac through its direct interaction with CYFIP [147,148].
The WAVE/SCAR complex activates the Arp2/3 complex
and has a clear impact on neuronal growth (Figure 4, xl)
[95,149].

Taken together, most if not all classes of actin regulatory
factors have been identified in Drosophila and many of
them have been associated to varying degrees of certainty
with neuronal growth.

Regulators of microtubule dynamics in Drosophila growth 
cones
The second cytoskeletal component essential for growth
cone advance is the microtubule; factors regulating their
dynamics are summarised in Figure 3 and Table 1. One
important class of proteins regulating the elongation and
shortening of microtubules comprises the plus-end-track-
ing molecules (+TIPs) [150,151]. A number of these have
been identified in Drosophila. CLIP-190 (orthologue of
vertebrate CLIP-170) is strongly expressed in the nervous
system [152] and has been shown to interact with the
+TIP protein Chb (Chromosome bows/Orbit/MAST, an
orthologue of vertebrate CLASP, CLIP-associated protein)
[153]. Further +TIP molecules described for Drosophila are
APC1 and APC2 (adenomatous polyposis coli), both of
which are expressed in the brain (though mainly in neu-
ronal somata) [154], and three possible homologues of
EB1 (Endbinding protein 1; Eb1, CG18190, and
CG32371), the potential role of which has yet to be
addressed in the nervous system [155]. A potential regula-
tor of these molecules is the Par3/6-complex, which local-
ises to growth cones in both mammals and Drosophila,
and has been shown to organise the cytoskeleton in Dro-
sophila motorneurons [19,57,156,157]. Another molecule
required for neuronal growth in Drosophila is the lissen-
cephaly-associated factor Lis1, a molecule shown to be
capable of binding microtubules to reduce microtubule
catastrophe events [158,159]. Characterisation of the lis1
mutant growth phenotype in Drosophila suggests Lis1 may
function through an interaction with the motor protein
Dynein [158,160]. Finally, an important class of microtu-
bule-binding proteins, also reported for Drosophila, com-
prises the microtubule associated proteins (MAPs), which
stabilise and facilitate transport along microtubules [151].
MAP2 seems to be absent from the Drosophila genome,
but one Drosophila Tau-like protein that localises within
axons has been described, although no functional data
have been reported to date [161,162]. A MAP1B-like mol-
ecule called Futsch has been shown to regulate axonal
growth in Drosophila, presumably through stabilisation
and loop formation of microtubules [163].

Therefore, as for the actin cytoskeleton, many regulators
of microtubule dynamics in the Drosophila nervous system
have been identified. Interestingly, the proteins described
here are regulated in part through the same factors
described previously in relation to actin dynamics. For
example, the activity of the +TIP protein Chb/CLASP is
regulated by the tyrosine kinase Abelson during axon
guidance at the CNS midline [153], which is also a regu-
lator of the actin filament elongating factor Enabled/VASP
[164]. Furthermore, GTPases of the Rho-family, which are
major regulators of the actin cytoskeleton (see 'Regulators
of actin dynamics in Drosophila growth cones' above), also
influence a number of microtubule regulating molecules
[150,156].

Regulators of actin-microtubule cross-talk
Cross-talk between microtubules and actin is an essential
aspect of regulation of growth cone behaviour (see 'Prin-
cipal structure and function of growth cones' above), and
this process has long been known to be facilitated by
microtubule-associated proteins [165]. Such a function
may, in part, be carried out by MAPs, as suggested by the
observation that MAP2 can bind both microtubules and
actin [166]. In Drosophila, two molecules with dual actin-
and microtubule-binding capabilities have been reported.
Short stop/Kakapo is a member of the Spectraplakin fam-
ily of cytoskeletal linker molecules [167], and its cytoskel-
etal binding activity is required for axon extension [168].
Another actin-microtubule linker in Drosophila is the
highly conserved DPod-1, which has been suggested to be
required for growth cone guidance rather than axon exten-
sion [169].

In conclusion, many (potential) components of the
machinery regulating the cytoskeletal dynamics of growth
cones have been identified and characterised to differing
degrees in Drosophila. It is essential to extend the analysis
of these factors both at the subcellular level and in combi-
nation with genetic strategies, using the various growth
cone models available in Drosophila to identify precisely
how guidance cues are transduced to direct cytoskeletal re-
organisation.

Signalling mechanisms involved in axonal 
pathfinding in Drosophila
Nature of axon guidance cues
Cytoskeletal regulation is a house-keeping function
required in all cells and, thus, a large common set of mol-
ecules serving this purpose would be expected to be
present in all neurons. In contrast, the signals involved in
growth cone guidance and/or the molecular mechanisms
that transduce those signals are likely to differ between
different types of neurons, as each neuron makes a specific
set of pathfinding decisions to reach its synaptic target. It
follows that the neuronal cytoskeletal machinery should
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be responsive to a broad spectrum of axon guidance cues
and signalling pathways. Factors that have been shown to
guide growing axons include simple structural barriers
such as impenetrable tissues or gaps due to wounding
[170], electric fields (galvanotropism) [171,172], light
(phototropism) [173], or mechanical forces (stereotro-
pism) that can be either applied externally [174,175] or
generated via the growth cone's own pulling forces antag-
onised by adhesive interactions with the environment
[176]. However, the best understood form of axon guid-
ance is through external chemical/molecular cues and
their receptive machinery within growth cones. Many lig-
and/receptor pathways involved in axon guidance have
been identified [177-179]. Guidance molecules can be
either diffusible, or attached to the extracellular matrix or
cell surfaces. They are present in the environment of
growth cones in an evenly distributed, graded or spatially
restricted manner. Depending on its receptive machinery,
a growth cone may either fail to respond to certain guid-
ance molecules, or interpret them as growth-permissive,
attractive or repulsive signals [2]. It is now a universally
accepted idea that the same guidance molecules can act
both as repellents and attractants on different axons, as
was shown for ligands such as Unc-6/Netrin or Sema-
phorins in invertebrates and vertebrates alike [180-183].
To add to this complexity, the behaviour of an individual
growth cone can be modified over time, for example,
through alterations in its electrical activity patterns
[184,185].

In the following, we will focus on a subset of neuronal
model systems studied in Drosophila to illustrate the com-
plexity of the molecular signalling pathways discovered
and analysed in this model organism.

Pathfinding in the trunk of the Drosophila 
embryo
Axons of motorneurons and sensory neurons
A variety of neuronal model systems have been used for
studies of axonal growth in Drosophila (see 'Models for
axonal growth in Drosophila' above; Figure 1). Of these,
the most intensely studied are the systems in the trunk of
the Drosophila embryo, in particular, motoraxons in the
periphery and axons of motor-, inter-, and sensory neu-
rons within the CNS (neurons 1–3 in Figure 1). From
developmental and morphological analyses of these neu-
rons, it has become clear that the identity of individual
neurons is specified mainly by their stereotypic lineages
[186-188]. Each neuron then makes a number of stereo-
typic pathfinding decisions as they advance to their partic-
ular target and the mature morphology of many of these
axons have been characterised (Figure 5c,d) [189-193].

For example, motorneuronal growth cones make a series
of choices as they grow into the periphery. First, they have

to take the appropriate stepwise decisions that guarantee
that their axons exit the CNS and join one of six possible
principal nerve branches leading to their appropriate tar-
get muscle fields. Second, they defasciculate from other
axons in their nerve at precise points to approach their
appropriate target muscles. Third, they establish adhesive
contacts with their appropriate target muscles at precise
positions. Fourth, the motorneuronal growth cones even-
tually undergo drastic morphogenetic changes and differ-
entiate into neuromuscular junctions. In this cellular
system, we currently have insights into: the specification
of motorneuron and muscle identities (which in turn
determine motor axonal pathfinding behaviour); relevant
cells and tissues used as guideposts by motor neurons;
mechanisms of fasciculation, defasciculation and pioneer
guidance; and the combination of permissive, attractive or
repulsive molecular guidance cues governing motor
axonal navigation. The systems utilised for studying
motor axon guidance and the mechanisms they have
revealed are discussed in detail elsewhere [49,194].

In contrast to the motoraxonal system, the sensory system
of the trunk has been somewhat neglected, in spite of its
obvious advantages, which include the following. First,
each of the approximately 40 sensory neurons per
hemisegment has been individually identified [195]. Sec-
ond, sensory cell bodies are relatively accessible and can
be visualised at the single cell level in the living embryo
[192]. Third, the normal pattern of axon growth from sev-
eral of these neurons, and the environment through
which they navigate in the periphery and where they ter-
minate in the CNS, have been characterised in detail
[192,196-201], providing an ideal background for studies
of the genetic control of sensory axon growth. While at
least two morphological screens have been performed to
uncover such genes [25,30], our understanding of the
molecular basis for sensory axon guidance is still limited.
Nonetheless, several factors that guide motor axons in the
periphery and interneuronal axons in the CNS have been
shown to play a role in sensory axon guidance, such as
Delta and its receptor Notch [197], the actin-microtubule
linker molecule Short stop/Kakapo [25,202], Slit and its
cognate receptors Robo and Robo2 [203], and the
secreted Semaphorin, Sema2a and its receptors Plexin B
and Plexin A [204].

Principal axonal pathfinding decisions in the CNS
Motor-, sensory and interneurons all extend axons within
the CNS. To study their growth decisions in the embry-
onic CNS, a number of visualisation strategies have been
used, comprising global neuropile markers (Figure 4, i)
[23], molecular markers for reproducible axon fascicles,
such as Fasciclin 2 (Figure 4, ix) [205,206], transplanta-
tion-based analyses of neural lineages (Figure 5c,d) [207],
labelling of identified neurons through dye injections or
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via genetically targeted markers (Figure 4, xxi-xxxi)
[81,208], or ultrastructural analyses [8]. The level of preci-
sion provided by each of these techniques varies signifi-
cantly, which can make it difficult to compare studies
obtained via different strategies. However, when combin-
ing the various approaches, a very precise view of neuro-
nal growth processes in the embryonic Drosophila ventral
nerve cord has been obtained, as outlined below.

One obvious feature of axonal growth behaviour in the
CNS is that projections of motor-, inter- and sensory neu-
rons aggregate into a cell body-free region, the neuropile,

in which synaptic contacts will be established (Figure 2a).
This behaviour of neurites to segregate away from cell
bodies and constitute the neuropile seems to be driven by
axo-axonal affinity, as illustrated by axons of larger groups
of neurons in primary cell culture, which always associate
into small neuropile-like arrangements [44]. The neuro-
pile stereotypically forms in the dorsal plane of the ventral
nerve cord (Figures 1b and 2a), where many of the pio-
neer motor- or interneurons that initiate formation of the
neuropile are located. In contrast, motor- and interneu-
rons in ventral or lateral positions of the nerve cord, as
well as sensory neurons entering through the segmental

Axonal pathfinding and fasciculation behaviour in the embryonic ventral nerve cordFigure 5
Axonal pathfinding and fasciculation behaviour in the embryonic ventral nerve cord. (a) In the ventral nerve cord of stage 13/
14 embryos, growth cones of identified neurons (aCC, curved arrow; pCC, arrow; RP2, arrow head) navigate in stereotypic 
positions (stippled line, midline; asterisk, somata of aCC and pCC). (b) Schematic representations of early growing neurons 
vMP2, dMP2, MP1, aCC and pCC (colour coded): at stage 13, their axons are partly guided by glia cells (grey circles) and 
Netrin A and B (light green) bound to lateral fields of Frazzled expression (wave pattern); MP1s and dMP2s grow jointly poste-
riorward, whereas vMP2s and pCCs fasciculate and grow together anteriorward until all four neurons contact one another 
midway between adjacent neuromeres and establish a single longitudinal fascicle (stage 13) that splits (stage 14), re-fasciculates 
(stage 15) and splits again (stage 16), partly mediated by glia cells (pCCs, dMP2s, vMP2s form a common fascicle close to the 
midline, MP1s a distinct axon tract further lateral; grey stippled line represents the lateral Fas2 fascicle of unknown identity; 
compare Figure 4, ix). (c,d) The neuroblast lineage NB1-2 [190] illustrates the stereotypic pathfinding choices of individual 
neurons (curved arrow, ipsilateral longitudinal path; AC/PC, anterior/posterior commissure; arrow, medial contralateral longi-
tudinal; double chevron, lateral contralateral longitudinal; arrow head, soma of identified TB neuron; CX, cortex; NP, neuro-
pile). (e) Regulation of midline crossing and mediolateral longitudinal path choice: ipsilateral neurons don't express 
Commissureless (Comm), and their combinatorial Robo receptor code determines the mediolateral positioning of their axons; 
contralateral neurons express Comm (black T), thus preventing transport of Robo receptors to the growth cone (curved red 
arrow); subsequent downregulation of Comm activity permits the Robo-mediated fascicle choice. (f) Choice of anterior versus 
posterior commissure during midline crossing is partly determined by posterior expression of Wnt5 (Figure 4, xx), which 
repels growth cones of Derailed expressing neurons. (c,d) Kindly provided by Janina Seibert, Christoph Rickert and Gerd 
Technau; (b) redrawn from Hidalgo and Booth [223].
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nerves, have to grow through the cortex towards the
neuropile. On their way towards the neuropile, axons of
neurons derived from the same neuroblast lineage tend to
fasciculate [189,190], a property that is also true for the
larval nerve cord [209].

Within the (prospective) neuropile, growth cones are
faced with a number of decisions (Figures 1b and 4c,d).
They may first simply terminate shortly after entering the
ipsilateral neuropile (some interneurons); second, grow
towards a peripheral nerve root to exit the neuropile (ipsi-
laterally projecting motorneurons); third, turn anteriorly
or posteriorly to project along longitudinal fascicles in the
connectives (see 'The formation of longitudinal fascicles
in the embryonic ventral nerve cord' below; almost all
sensory axons and some interneurons); or fourth, cross
the midline (see 'Growth cone guidance at the Drosophila
CNS midline'; most interneurons and some motorneu-
rons). Those axons that cross the midline are faced with
the first and third choices again on the contralateral side.
Those axons that do not leave the neuropile terminate
their growth in stereotypic positions, presumably at
points of future synapse formation [210].

Motoraxonal growth towards the CNS exit point
The third and fourth growth decisions outlined above
(choice of longitudinal fascicles and midline crossing)
have been studied extensively during the past two dec-
ades, and insights gained from these studies will be
reviewed in detail in the sections 'The formation of longi-
tudinal fascicles in the embryonic ventral nerve cord' and
'Growth cone guidance at the Drosophila CNS midline'
below. In contrast, virtually nothing is known about the
mechanisms underlying axonal growth termination in the
neuropile. In the context of the navigational capability of
motorneuronal growth cones to exit the CNS, the involve-
ment of only two signalling pathways has been suggested
so far: the diffusible ligands Netrin A+B and their recep-
tors Unc5 and Frazzled, and the receptor tyrosine kinase
Eph and its ligand Ephrin. Targeted expression of Unc5 or
of double stranded Eph or Ephrin RNA in interneurons
causes their aberrant exit from the CNS (Figure 4, xxx)
[211,212]. However, later analyses using unc5 and Eph
loss-of-function mutations failed to detect equivalent
axonal phenotypes, calling the original findings into
debate [213,214]. At the cellular level, detailed analyses of
the contralaterally projecting motorneurons RP1 and RP3
have revealed that their growth cones depend on the pres-
ence of the somata of their contralateral homologues,
which are required as stepping stones to continue normal
pathfinding towards the neuropile exit points. In contrast,
ablation studies have revealed that intimate contacts
established by these motorneurons with a number of glial
guide post cells are not required [81,82,215]. If RP3
motorneurons are prevented from crossing the midline

experimentally (axotomy) or genetically (commissureless
mutant background; see below), their growth cones will
carry out the normal growth regime, however, in mirror
image fashion on the ipsilateral side, demonstrating that
midline crossing is not an essential prerequisite for their
capability to exit the CNS [216,217]. Obviously, the RP3
cell body (ipsi- or contralaterally) lies in a strategic posi-
tion from which the pathfinding cues towards the exit
point can be reached. However, under normal conditions,
early growth cones of these motorneurons seem first to be
attracted exclusively towards the midline, which domi-
nates over all other pathfinding cues.

The formation of longitudinal fascicles in the 
embryonic ventral nerve cord
The formation of longitudinal fascicles
Detailed analyses of the developing ventral nerve cord
have revealed the time course of initial antero-posterior
axonal growth within the longitudinal connectives
[8,82,218,219]. These investigations demonstrated that a
small number of early ipsilateral interneurons, namely
MP1, dMP2, vMP2 and pCC, pioneer a scaffold of longi-
tudinal fascicles that are subsequently joined by other
ipsi- and contralateral axons projecting in anterior or pos-
terior directions (Figure 5a,b). Cell-specific ablations of
MP1, dMP2, vMP2 and pCC in various combinations
have demonstrated that these pioneer axons are indeed
essential for the establishment of connectives as a whole
(Figure 4, xxiv) [219,220].

During their initial advance, growth cones of MP1, dMP2,
vMP2 and pCC establish intimate contacts with longitudi-
nal/interface glia cells, which line up in the area of the
future connectives prior to the axonal growth phase (Fig-
ure 5b) [8,206,218,221]. These intimate axono-glial con-
tacts reflect an essential role of this glial population as
guidepost cells for the four pioneer neurons, since abla-
tion of these glia cells causes severe disruption of the pio-
neer neurons' pathfinding and subsequent establishment
of connectives (Figure 4, xxxii) [222,223]. Additional
guidance cues for early pioneer neuron growth are the
secreted factors Netrin A and Netrin B. Both these proteins
are released from midline glia cells and become bound in
restricted dorso-lateral areas of the ventral nerve cord by
neurons in these areas that express Frazzled (a member of
the DCC immunoglobulin subfamily; Deleted in colorec-
tal cancer) on their dorsal surfaces (Figure 5b) [224]. Fraz-
zled is able to bind Netrins in these lateral areas, since it is
one of two identified Netrin receptors [225]. This distribu-
tion of presented Netrins is used as a navigational cue by
outgrowing pioneer neurons, as was demonstrated for
dMP2 [224]. Thus, Frazzled acts in a non-autonomous
fashion in the context of longitudinal pioneer growth.
Whether it is also the receptor used by the pioneering
growth cones has not been explored [224].
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In addition to responding to external cues such as glial
surfaces and Netrins, the axons of the four pioneer neu-
rons interact with each other in a stereotypical way,
involving sequential steps of fasciculation, defasciculation
and refasciculation (details in Figure 5b) [219,223]. Two
factors seem essential for this complex fasciculation
behaviour. First, defasciculation of axonal tracts depends
crucially on longitudinal glial cells [223], potentially
through physical intercalation of glial protrusions. Sec-
ond, CAMs are expressed on longitudinal axons in a
dynamic fashion and are believed to be the immediate
factors regulating selective fasciculation processes. These
CAMs comprise N-Cadherin [226], Neurotactin (bearing
a catalytically inactive cholinesterase-like domain)
[227,228], the GPI-anchored molecules Fasciclin 1 (com-
posed of four Fasciclin 1 domains) [229], Connectin
(containing leucin-rich repeats) [230,231], and the three
immunoglobulin family members Neuroglian (ortho-
logue of vertebrate L1), Fasciclin 2 (orthologue of verte-
brate N-CAM) and Fasciclin 3 [232-235]. Of these, N-
Cadherin is strongly expressed throughout the neuropile
and its loss causes aberrations of longitudinal fascicles
(Figure 4, xxxiv) [226]. Fasciclin 2 is initially expressed
only in the pCC pioneer neuron (and its sibling aCC)
[234], but its expression gradually spreads to further neu-
rons, constituting a final number of at least 11 longitudi-
nal Fasciclin 2-positive axon tracts in the mature
embryonic ventral nerve cord (Figure 4, ix) [236]. In the
absence of Fasciclin 2, the selective fasciculation behav-
iour of the pioneer neurons is considerably impaired,
although this does not have other obvious developmental
consequences [8,206]. An explanation for this mild phe-
notype seems to be redundancy of factors involved in
axonal pathfinding, as best exemplified by Neurotactin.
Neurotactin acts as a homophilic CAM in cell culture
assays, but this interaction requires its heterophilic bind-
ing to the secreted immunoglobulin protein Amalgam
[237-240]. Both ligand and receptor are widely expressed
in the developing nervous system, but their absence
causes no serious detectable phenotypes. However, neuro-
tactin mutant phenotypes emerge in combination with
mutations in other neuronal growth-related genes [241].
Thus, embryos carrying loss-of-function mutations of
both neurotactin and neuroglian display fasciculation
defects of dMP2 and MP1 axons and disrupted connec-
tives at high frequency (Figure 4, xxxv) [241]. Further
strong neurotactin mutant phenotypes were revealed in
combination with mutations of genes encoding the recep-
tor tyrosine kinase Derailed, the cytoplasmic tyrosine
kinase Abelson, or the CAM-like molecule Kekkon, but
not with a number of other tested factors (Ptp69D,
Ptp99A, Fasciclins 1–3, Pollux and Neuromusculin)
[241,242].

As illustrated by neurotactin's genetic interactions, the
range of molecules involved in longitudinal guidance of
central axons in Drosophila clearly goes beyond adhesion
factors, and this is supported by a number of further
mutant phenotypes. For example, lack of the transmem-
brane protein Semaphorin-1A and its receptor PlexinA
causes disruption of a lateral Fasciclin 2 tract (Figure 4,
xxxiii), whereas lack of PlexinB (the Semaphorin-2A
receptor) causes defasciculation of a median Fasciclin 2
tract [243-245]. Selective manipulations of [Ca2+]i-
dependent Calmodulin function in the four pioneer neu-
rons affect both their growth ability and fasciculation
behaviour [246]. Embryos carrying mutations in the genes
wnt5 or glaikit (encoding a phospholipase D superfamily
protein) show severe disruption of connectives and strong
defasciculation phenotypes [247,248]. Also, embryos
lacking Kuzbanian, a secreted metalloprotease of the
ADAM family, or the two receptor-linked protein tyrosine
phosphatases Ptp10D and Ptp69D, show severe aberra-
tions of the neuropile. However, in these latter two cases
the aberrations are not caused through aberrant growth or
fasciculation behaviours of the pioneer neurons, but
rather due to the misguidance of neurons growing at sub-
sequent stages [249,250].

The expression of these various neuronal receptors, adhe-
sion molecules and their associated molecules involved in
the neuronal response to environmental cues must be pre-
cisely regulated by pioneer neuron-intrinsic gene regula-
tory programmes. One candidate regulator is the neuronal
transcription factor Longitudinals lacking (Lola). In the
absence of Lola, longitudinal glia cells form normally, but
pCC, vMP2 and MP1 growth cones stall dramatically and
connectives fail to form [23,251]. Lola encodes a variety of
isoforms that are expressed within subsets of neurons and
these are likely to regulate the expression of many guid-
ance molecules [252].

As discussed above, all these genetic pathways implicated
in longitudinal fascicle formation eventually have to act
on the cytoskeletal machinery of the growing neurons
(Table 1 and Figure 3). In agreement with this assump-
tion, genetic manipulations of various cytoskeletal regula-
tors cause severe disturbances of the longitudinal tracts, as
was demonstrated for Chickadee/Profilin, Abelson, mem-
bers of the the Arp2/3 or SCAR/WAVE complexes, Futsch/
MAP-1B, Rho-family GTPases, such as Cdc42, combina-
tions of Rac1, Rac2 and Mtl, or the Rac activator Trio (Fig-
ure 4, xxxvi to xl) [95,101,132,134,163]. In conclusion, a
clear temporal pattern of the cellular events and require-
ments in longitudinal pathway formation has been
described at high resolution. A good number of genes,
comprising adhesion, signalling or cytoskeletal regulatory
factors, have been demonstrated to mediate these precise
events. These reveal a significant role for interactions
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mediated by cell adhesive molecules to direct the neuro-
nal fasciculation decisions necessary during the formation
of longitudinal fascicles. These decisions are regulated by
additional contact mediated signals and effected by the
activation of cytoskeletal regulators.

Mediolateral patterning of longitudinal fascicles
Individual longitudinally projecting axons are positioned
at particular locations within the connectives. This is
mediated both by selective fasciculation behaviour and
the use of protein gradients that establish positional infor-
mation within the connectives to dictate where individual
axons project. As explained above, longitudinal pioneer
axons are initially grouped into one fascicle, but they sub-
sequently separate into distinct fascicles in characteristic
dorso-ventral and medio-lateral positions (Figure 5b)
[219,223]. This may suggest a gradual increase in distinct
positional values in the neuropile of the ventral nerve
cord. In agreement with this hypothesis, the expression of
the three paralogous Roundabout receptors (Robo,
Robo3, Leak/Robo2) is largely overlapping at early stages
of axonal growth. However, at later stages, these three
receptors take on clearly distinguishable expression
domains, that is, Leak/Robo2 becomes restricted to the
lateral area, Robo3 spans from lateral to medial, and Robo
covers the whole width of the neuropile (Figure 4, ii to iv)
[253,254]. This provides a combinatorial code based on
the number of these three Robo receptor types expressed
by each particular axon, thus dictating their spatial
arrangements within the connectives (Figure 5e). Experi-
mental changes of the Robo receptor composition/dosage
expressed by single neurons are sufficient to shift the posi-
tion of their projections in the medio-lateral plane (Figure
4, xxix) [205,254-256]. During normal development, the
state of Robo receptor expression of individual neurons
appears to be determined by their cell-autonomous pro-
grammes. Thus, the expression or non-expression of the
fate-determining transcription factor Atonal in chordo-
tonal versus multidendritic sensory neurons differentially
regulates their distinct medio-lateral fasciculation behav-
iours by instructing the expression state of the Robo3
receptor in a cell type-specific manner [255]. Similarly,
the Lola transcription factor has a role to regulate the
expression of Robo within central neurons [257].

The ligand to all three Robo receptors is the secreted factor
Slit, which is released from glia cells in the midline of the
ventral nerve cord where it is present at its maximal con-
centration (Figure 5e) [258]. It is also present, although at
much lower levels, within the connectives, and this local-
isation is partly mediated by the heparan sulfate prote-
oglycan Syndecan (Figure 4, vi) [259]. Axons expressing a
higher dosage or greater number of Robo receptor types
are more sensitive to the Slit repellent and are positioned
further from the midline (Figure 5e) [253,254]. In addi-

tion, Robo function inactivates N-Cadherin-mediated
adhesion [260]. Thus, higher Robo activity weakens the
adhesive interactions driving fasciculation. This might
allow growth cones with high Robo expression to progress
further laterally and aid in regulating their mediolateral
positioning. Consistent with this hypothesis, N-cadherin
mutant embryos display aberrations of longitudinal fasci-
cle patterns (Figure 4, xxxiv) and, at the identified cell
level (apterous-expressing neurons), growth cones alter
their medio-lateral pathfinding and longitudinal fascicu-
lation behaviour in stereotypical ways (Figure 4, xxxi)
[226]. It remains to be seen whether additional adhesion
molecules are regulated similarly through Robo-depend-
ent pathways.

Interestingly, axons shifted in the medio-lateral plane
through targeted manipulations of their Robo genes do
not project randomly but seem to partition in an organ-
ised way with a different group of axons, as suggested by
their fasciculated appearance (Figure 4, xxix)
[205,254,255]. A potential molecular explanation for this
phenomenon is that the types and patterns of adhesion
molecules is repeated within different mediolateral posi-
tions, allowing shifted axons to find an appropriate fasci-
cle even in an inappropriate Robo zone.

In conclusion, both short-range interactions as well as
long range organiser activity contribute to the spatial
arrangement of longitudinal fascicles along the medio-lat-
eral axis of connectives.

Growth cone guidance at the Drosophila CNS midline
The majority of axons cross the midline within either of
two commissures per segment, called anterior and poste-
rior commissures (Figures 1b, 4c,d and 5i). The formation
of these commissures begins at embryonic stage 12 and
involves dynamic but reproducible interactions between
pioneering growth cones, neuronal cell bodies and
migrating glia cells [28], and a dynamic up- and downreg-
ulation of cell adhesion molecules, such as Fasciclin 1,
during the period of axonal invasion of these commis-
sures [8,261]. Each neuron makes a stereotypic choice as
to whether to cross the midline and, for those that cross,
whether to grow through the anterior or posterior com-
missure (Figure 5c,d). Within each commissure axons are
arranged in fascicles, as illustrated by the expression pat-
tern of molecules such as the adhesion molecule Connec-
tin, which is restricted to specific sub-fascicles within
commissures [230,231].

The Wnt5/Derailed signalling pathway (Figure 5f) plays
an important role to regulate growth cone choice of ante-
rior versus posterior commissure. Axons of the anterior
commissure express the atypical receptor tyrosine kinase
Derailed, which mediates their repulsion from the poste-
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rior commissure (Figure 4, xix) [208,262]. A ligand of
Derailed that has been shown to mediate this commis-
sure-specific repulsion is Wnt5, which is enriched in the
area of the posterior commissure (Figure 4, xx) [248,263].
Absence of Derailed or Wnt5 causes random misrouting
of axons from the anterior towards the posterior commis-
sure (Figure 4, xviii), whereas Derailed gain-of-function
repels axons from the posterior commissure (Figure 4, xxii
and xxvi) [208,248,263]. Obvious candidate factors
organising the intrasegmental distribution of guidance
cues along the antero-posterior axis are the segment polar-
ity genes. Consistent with this assumption, embryos
mutant for the segment polarity gene gooseberry have a
severely reduced posterior commissure (Figure 4, xvii)
[23,264].

With respect to the axonal choice of whether to cross the
midline or stay ipsilateral, two major regulatory pathways,
the Netrin/Frazzled and Slit/Robo systems, have been
identified. Cells at the midline of the ventral nerve cord
express the secreted factors Netrin A and B, in the absence
of which commissure formation is clearly reduced (Figure
4, vii and xv) [265,266]. Although the Netrin molecules
can influence the growth of axons some distance from the
midline, this does not appear to be necessary for midline
crossing in Drosophila, as membrane tethered versions of
Netrin that necessarily act over a short-range are sufficient
to attract axons across the midline [267]. In contrast, long-
range signalling activity of Netrin is necessary for commis-
sural axons to traverse the floor plate of the vertebrate spi-
nal cord [268]. Netrin A and B act as attractive ligands to
CNS axons expressing the Frazzled receptor to bring them
across the midline (Figure 4, viii and xvi) [225]. However,
not all neurons are attracted by Netrins, and neurons
expressing the alternative receptor Unc5 are repelled by
them (Figure 4, xxx) [212]. First insights are being gained
into the spatial regulation of Frazzled expression. Thus, in
neurons of the posterior commissure, Frazzled (together
with Trio and Enabled) is directly upregulated by the seg-
mentation gene Engrailed [269].

Another major factor guiding axons at the CNS midline
and opposing the effects of Netrins is the secreted repel-
lent factor Slit, which is also expressed by the glia cells at
the midline of the ventral nerve cord (Figure 4, vi)
[258,270]. In the absence of slit function, all axons of the
ventral nerve cord collapse towards the midline (Figure 4,
xiv) [23]. Slit activity to control midline crossing is medi-
ated by the two immunoglobulin domain containing
receptors, Robo and Leak/Robo2 (see 'Mediolateral pat-
terning of longitudinal fascicles' above). Absence of these
two proteins phenocopies the slit mutant phenotype (Fig-
ure 4, xi) [205,271,272]. Thus, Slit is required to prevent
axons from inappropriately reaching the midline; it acts to
maintain all ipsilateral growth cones away from the mid-

line, and also ensures that contralateral growth cones are
prevented from re-crossing the midline. To avoid a grid-
lock of advancing growth cones at the midline, the oppos-
ing Slit/Robo and Netrin/Frazzled signalling pathways are
precisely regulated via a number of mechanisms, which
may involve cross-pathway regulation of their antagonis-
ing activities [273,274]. Also, the heterotrimeric G-protein
AcGq3 has been suggested to assist in setting the balance
of attractive versus repulsive cues in growth cones [275].
Alternatively, direct interactions between both signalling
pathways may occur, as demonstrated in Xenopus where
Robo receptors are capable of binding and inhibiting the
Netrin receptor DCC [276]. The most crucial regulator of
Robo activity during midline crossing in Drosophila is the
short transmembrane protein Commissureless (Comm)
(Figure 4, v and xiii) [23,277]. Comm acts in commissural
axons to traffic Robo away from the growth cone surface
before and during crossing of the midline (Figure 5e).
Subsequently, growth cones are prevented from growing
back across the midline by down-regulation of Comm
activity within distal regions of commissural axons fol-
lowing midline crossing [207,278]. This mechanism aids
likewise in steering contralateral growth cones towards
the correct medio-lateral position in the connective (Fig-
ure 5e; see 'Mediolateral patterning of longitudinal fasci-
cles' above). The Comm-dependent sorting of Robo away
from the plasma membrane has been shown to involve
Nedd4 ubiquitin ligase activity [279], although details of
this regulation have recently been questioned [280]. Inter-
estingly, no Comm homologue has been found so far in
mammals. Instead, midline crossing seems to be regu-
lated by cis-inhibition of Robo1 activity through another
Slit ligand, Robo3/Rig-1 [281]. However, it has recently
been identified that a Rab guanine nucleotide dissociation
factor is required in chick for Robo1 surface expression (E
Stoeckli, personal communication), suggesting that activ-
ity of vertebrate Robo may, in part, be regulated via intra-
cellular trafficking as in Drosophila. Furthermore,
interactions between Robo receptors in Drosophila may
influence each others activity (A Myat, personal commu-
nication), suggesting further parallels to the vertebrate sys-
tem.

In vivo observations in normal and mutant Drosophila
embryos have revealed that growth cones of the ipsilateral
motorneuron RP2 form longer and more persistent filo-
podia in robo mutant animals, and that filopodia reaching
across the midline have the unusual tendency to persist
and develop into contralateral branches [84]. This clearly
suggests that Robo influences the cytoskeletal machinery
of these growth cones. In agreement with this notion, robo
interacts genetically with mutations of the actin-plas-
mamembrane linker molecules beta-Spectrin/Karrussell
in the context of midline crossing [282,283] and Robo
activity increases activity of the actin regulator, Rac [284].
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Furthermore, it was shown that both Enabled and Abel-
son can bind and genetically interact with Robo, thereby
providing a link from Robo to the actin cytoskeleton (Fig-
ure 3e) [103,285-287]. This link is further strengthened by
the demonstration that Abelson, in the context of midline
crossing, interacts genetically with the actin momomer-
binding molecule Capulet and the microtubule plus end-
binding molecule Chb/Orbit/MAST (Figure 3e)
[103,153]. In addition, Abelson links genetically to the
Netrin/Frazzled pathway [288]. Thus, Abelson seems to
be a major factor orchestrating cytoskeletal dynamics in
growth cones crossing the midline. Further components
of the cytoskeletal machinery described in the first part of
this review (Figure 3, Table 1) have been implicated in
midline crossing. These factors include the Rho-like
GTPases, Pak, Myosin light chain kinase, the actin-micro-
tubule linkers DPod-1 and Short stop, RhoGAP93B/Vilse,
and the RhoGEFs Sos (Son of sevenless), Trio and
GEF64C (Figures 3e and 5, xxxvi to xxxviii)
[119,132,134,138,143,144,169,284,288-291]. A further
'housekeeping' factor with clear involvement at the mid-
line is the Ca2+-binding molecule Calmodulin [289].

Apart from the three ligand receptor systems discussed
above, a number of other genes have been implicated in
the process of midline crossing and need to be incorpo-
rated into any model that seeks to explain how midline
crossing is regulated. Thus, Amalgam, a secreted protein
with three immunoglobulin domains, and its binding
partner Neurotactin, a transmembrane protein with a cat-
alytically inactive cholinesterase domain, interact with
Abelson in the context of midline crossing [242]. Another
molecule interacting with Abelson in midline crossing is
Fasciclin 1, a lipid-linked cell-surface glycoprotein that
can act as a homophilic adhesion molecule [261]. Synde-
can, a transmembrane heparan sulfate proteo-glycan
(HSPG) is expressed on longitudinal and commissural
axons, genetically interacts with and physically binds to
both Slit and Robo, and promotes their signalling
[259,292]. Its function at the midline is partially redun-
dant with the GPI-anchored HSPG Dally-like [259]. Fur-
thermore, Syndecan can bind the receptor tyrosine
phosphatase (RPTP) DLAR, present on many axons in the
embryonic CNS [293]. Besides DLAR, another three
RPTPs are expressed in the Drosophila CNS, DPTP69D,
DPTP99A, and DPTP10D [250,294]. Of these, DPTP10D
and DPTP69D seem to promote Slit/Robo function, and
combined loss of both causes a robo-like midline-crossing
phenotype [250]. Robo signalling is also regulated by
Kuzbanian, a member of the ADAM family of metallopro-
teases, which may be involved in proteolytic activation of
the Slit/Roundabout receptor complex [272], while Slit
secretion is regulated by Schizo, an ARF6 GEF [295]. The
translational inhibitor Krasavietz (Kra) is required for nor-
mal midline crossing and kra mutations interact geneti-

cally with short stop, slit and robo [291]. Also, integrins and
their ligands Tiggrin and Laminin A show genetic interac-
tion with Slit in midline crossing [296]. Finally, severe
midline crossing defects occur in embryos double-mutant
for the genes kekkon and neurotactin, both of which encode
adhesion factors [241]. Whether this phenotype also
relates to the Slit/Robo function has not yet been
addressed.

Taken together, an ever increasing network of factors has
been discovered to play an active role in midline crossing
in Drosophila, and there is hardly a cellular system of
axonal growth for which there is more molecular and
genetic information available. Axons must make a deci-
sion whether to cross the midline and, those that do cross,
must select a commissure, and be shepherded towards,
across and then away from the midline. This clearly
requires a significant amount of cellular processing for
which the principal mechanisms are quite well under-
stood (Figure 5e,f), and work has begun to tie together the
various modulatory factors into clear regulatory pathways
(Figure 3e). The major ligands Wnt5, Netrin, and Slit
mediate the choice of commissure, and growth towards
and growth away from the midline. The effectiveness of
the different ligands has to be modulated to ensure the
growth cones make their appropriate responses. For exam-
ple, the secretion of Slit is regulated by Schizo, while the
action of Slit is modulated by proteoglycans and the pro-
motion of attraction or repulsion at the midline carefully
regulated by the integration of multiple downstream
effectors to ensure a coherent response (Figure 3e). The
activity of the major receptors Robo and Frazzled are
finely regulated both transcriptionally and post-transcrip-
tionally in crossing and non-crossing axons to ensure they
migrate along their appropriate pathways. Finally, the
fidelity of these pathway choices is also influenced by cell
adhesive interactions and potentially the activity of recep-
tor phosphatases. A good number of the major players
involved in midline crossing are conserved across the ani-
mal kingdom [297,298], and this work has already had
implications for medical research, as demonstrated by the
association of human gaze palsy with progressive scoliosis
(HGPPS) with mutations of the robo3 receptor gene [299].

Conclusions and perspectives
A number of well characterised and experimentally ame-
nable cellular systems for the study of axonal growth in
situ have been established in Drosophila. Combined with
the genetic tractability of the fruit fly, these cellular sys-
tems have helped to uncover an impressive palette of
molecular mechanisms underlying axonal growth, many
of which can be translated into axonal growth processes in
higher organisms. However, a number of challenges and
open questions still remain to be addressed in the Dro-
sophila system.
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First, more analyses need to be carried forward to the
identified cell level using cell-specific markers (Figure 4,
xv versus xxiii, or xxxi versus xxxiv), thus enabling molec-
ular functions to be assigned more precisely to their
immediate cellular role. Also, such analyses would pro-
vide better means to study the integration of different
molecular pathways or activities, especially when capital-
ising on the same sets of cells as read-outs. Second, of par-
ticular interest in current research on neuronal growth are
the mechanisms linking the signalling machinery of axon
guidance to the factors regulating the growth cone's
cytoskeleton and, thus, its morphogenetic dynamics. To
carry out such research in Drosophila, work at the subcellu-
lar level of growth cones will have to be intensified, and
the feasibility of such work has clearly been demonstrated
(see 'Growth cones in Drosophila' above). Third, with
respect to pathfinding mechanisms in the ventral nerve
cord, virtually nothing is known about growth regulation
in the dorso-ventral axis, which may be due to the fact that
the read-outs used in most genetic screens would not eas-
ily reveal growth aberrations within the vertical axis.
Improved cellular systems and closer attention to this
aspect of axon growth should ensure that mechanisms
will be found in due course [255]. Future searches for such
factors could be facilitated by the fact that whole neuronal
subgroups show stereotypic dorso-ventral growth behav-
iours: most sensory neurons (except for vbd- and dbd-
neurons) innervate the ventral neuropile, whereas all
motor axons grow towards dorsal neuropile areas, where
they form dendrites (Figure 2a) [19,236,300]. Fourth,
redundancy of mechanisms is an obvious issue, and more
double- or triple-mutant constellations, especially of
adhesive and signalling factors, will have to be tested to
appreciate their real requirements during nervous system
development [241,301]. Fifth, we have still few insights
into the transcriptional control over the pathfinding
machinery in individual neurons, although a number of
transcription factors related to growth behaviour have
been described [49,251,252,255,302-304]. Improved
means to identify the genes regulated by these factors,
such as DamID or ChIP-on-chip technology [302,305],
will advance our knowledge at this level of growth con-
trol. Finally, a whole palette of mutations with exciting
phenotypes has been obtained in various genetic screens
(see 'Models for axonal growth in Drosophila' above), and
many of them are still awaiting their detailed analysis.
Consequent work in these directions will ensure that Dro-
sophila will continue to contribute essential new insights
to the field of neuronal growth.
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